

第2版

2026年1月

U00146042802

SmartCS REST API Operation Guide

運用ガイド
 Operation Guide

©セイコーソリューションズ株式会社 2022

無断転載を禁じます。

本書の内容は、断りなく変更することがあります。

「SEIKO」はセイコーホールディングス株式会社の登録商標です。

本書および本書に記載されたソフトウェアの使用によって発生した損害

およびその回復に要する費用に対し、当社は一切責任を負いません。

目次

1 章 はじめに ... 1

1.1 本ドキュメントについて ... 1

1.2 機能概要 ... 2

1.3 SmartCSの処理概要 ... 3

1.4 動作要件 ... 4

2 章 準備 ... 6

2.1 SmartCSの準備 .. 6

2.1.1 REST API機能の有効化・無効化 ... 6

2.1.2 ユーザの作成 .. 8

2.1.3 セキュリティ .. 12

2.2 ログ情報 .. 14

2.2.1 REST APIのアクセスログ ... 14

2.2.2 REST APIのオペレーションログ.. 14

3 章 REST API機能 .. 15

3.1 リクエスト ... 15

3.1.1 ベース URL ... 15

3.1.2 HTTP メソッド .. 16

3.1.3 パラメータ .. 17

3.2 認証 .. 18

3.2.1 Basic認証 ... 18

3.3 レスポンス ... 19

3.3.1 ステータスコード ... 19

3.3.2 共通データ ... 20

3.4 共通エラー ... 22

4 章 APIリソースとメソッド 24

4.1 SYSTEM .. 25

4.1.1 /system/version (GET) ... 25

4.1.1.1 概要 ... 25

4.1.1.2 リクエスト .. 25

4.1.1.3 レスポンス .. 26

4.1.1.4 エラー ... 27

4.1.1.5 実行例 ... 27

4.2 USERS ... 28

4.2.1 /users (GET) ... 28

4.2.1.1 概要 ... 28

4.2.1.2 リクエスト .. 28

4.2.1.3 レスポンス .. 29

4.2.1.4 エラー ... 31

4.2.1.5 実行例 ... 31

4.2.2 /users (POST) ... 32

4.2.2.1 概要 ... 32

4.2.2.2 リクエスト .. 32

4.2.2.3 レスポンス .. 36

4.2.2.4 エラー ... 36

4.2.2.5 実行例 ... 37

4.2.3 /users/{username} (GET) ... 38

4.2.3.1 概要 ... 38

4.2.3.2 リクエスト .. 38

4.2.3.3 レスポンス .. 39

4.2.3.4 エラー ... 41

4.2.3.5 実行例 ... 41

4.2.4 /users/{username} (PUT) ... 42

4.2.4.1 概要 ... 42

4.2.4.2 リクエスト .. 42

4.2.4.3 レスポンス .. 46

4.2.4.4 エラー ... 46

4.2.4.5 実行例 ... 47

4.2.5 /users/{username} (DELETE).. 48

4.2.5.1 概要 ... 48

4.2.5.2 リクエスト .. 48

4.2.5.3 レスポンス .. 49

4.2.5.4 エラー ... 49

4.2.5.5 実行例 ... 49

4.2.6 /users/login (GET) .. 50

4.2.6.1 概要 ... 50

4.2.6.2 リクエスト .. 50

4.2.6.3 レスポンス .. 50

4.2.6.4 エラー ... 51

4.2.6.5 実行例 ... 51

4.3 SERIAL ... 52

4.3.1 /serial/tty (GET) ... 52

4.3.1.1 概要 ... 52

4.3.1.2 リクエスト .. 52

4.3.1.3 レスポンス .. 53

4.3.1.4 エラー ... 54

4.3.1.5 実行例 ... 54

4.3.2 /serial/tty/{ttylist} (GET) ... 55

4.3.2.1 概要 ... 55

4.3.2.2 リクエスト .. 55

4.3.2.3 レスポンス .. 56

4.3.2.4 エラー ... 57

4.3.2.5 実行例 ... 58

4.3.3 /serial/tty/{ttylist} (PUT).. 59

4.3.3.1 概要 ... 59

4.3.3.2 リクエスト .. 59

4.3.3.3 レスポンス .. 62

4.3.3.4 エラー ... 62

4.3.3.5 実行例 ... 63

4.3.4 /serial/hangup/tty/{ttylist} (POST) .. 64

4.3.4.1 概要 ... 64

4.3.4.2 リクエスト .. 64

4.3.4.3 レスポンス .. 65

4.3.4.4 エラー ... 65

4.3.4.5 実行例 ... 66

4.4 TTYMANAGE ... 67

4.4.1 /ttymanage (POST) .. 67

4.4.1.1 概要 ... 67

4.4.1.2 リクエスト .. 67

4.4.1.3 レスポンス .. 70

4.4.1.4 エラー ... 71

4.4.1.5 実行例 ... 73

4.5 LOG/HISTORY ... 75

4.5.1 /log/history/command (GET) ... 75

4.5.1.1 概要 ... 75

4.5.1.2 リクエスト .. 75

4.5.1.3 レスポンス .. 76

4.5.1.4 エラー ... 76

4.5.1.5 実行例 ... 77

4.5.2 /log/history/console (GET) ... 78

4.5.2.1 概要 ... 78

4.5.2.2 リクエスト .. 78

4.5.2.3 レスポンス .. 79

4.5.2.4 エラー ... 79

4.5.2.5 実行例 ... 80

4.5.3 /log/history/ttysend/tty/{ttyno} (GET) ... 81

4.5.3.1 概要 ... 81

4.5.3.2 リクエスト .. 81

4.5.3.3 レスポンス .. 82

4.5.3.4 エラー ... 82

4.5.3.5 実行例 ... 83

4.5.4 /log/history/webapi (GET) .. 84

4.5.4.1 概要 ... 84

4.5.4.2 リクエスト .. 84

4.5.4.3 レスポンス .. 85

4.5.4.4 エラー ... 85

4.5.4.5 実行例 ... 86

4.6 LOG/SERIAL .. 87

4.6.1 /log/serial/tty/{ttyno} (GET) ... 87

4.6.1.1 概要 ... 87

4.6.1.2 リクエスト .. 87

4.6.1.3 レスポンス .. 88

4.6.1.4 エラー ... 88

4.6.1.5 実行例 ... 89

4.6.2 /log/serial/files/tty/{ttyno} (GET) ... 90

4.6.2.1 概要 ... 90

4.6.2.2 リクエスト .. 90

4.6.2.3 レスポンス .. 91

4.6.2.4 エラー ... 91

4.6.2.5 実行例 ... 92

4.6.3 /log/serial/search/tty/{ttyno} (GET) ... 93

4.6.3.1 概要 ... 93

4.6.3.2 リクエスト .. 93

4.6.3.3 レスポンス .. 94

4.6.3.4 エラー ... 95

4.6.3.5 実行例 ... 96

5 章 /ttymanage の解説 .. 97

5.1 使用上の注意 .. 97

5.2 制限事項 ... 99

5.3 各オプションの動作 .. 100

5.3.1 sendchar と recvcharの動作 .. 100

5.3.2 recvchar を設定しない場合の動作 ... 101

5.3.3 sendcharの特殊な設定 .. 102

5.3.4 error_detect_on_sendchar の動作 .. 108

5.4 sendchar の送信オプション一覧 ... 110

5.5 正規表現を設定する .. 112

6 章 付録 A. ユーザ権限毎のアクセス可能な APIリソース 114

1

1 章 はじめに

1.1 本ドキュメントについて

本ドキュメントは SmartCS の REST API 機能を使う場合に必要となる情報をまとめた運

用ガイドとなります。SmartCS の設定や各 API リソースの仕様、使用方法などを記載して

いますので、REST API 機能を使う場合にご利用下さい。

また、本ドキュメントは SmartCS の REST API 機能のみを取り扱ったドキュメントとなっ

ております。SmartCS の各種設定や、CLI コマンドの詳細についてはそれぞれ「取扱説明

書」、「コマンドリファレンス」、に詳細な記載がありますので、そちらも必要に応じて参照下さ

い。

2

1.2 機能概要

SmartCSのREST API機能の概要について説明します。SmartCSはこれまで telnet

や SSH で装置にログイン後 CLI を実行して設定や情報取得、また SmartCS に接続して

いる監視対象機器のオペレーションを行っていました。REST API 機能を使う事によって、

様々なクライアントやツールから各機能（API リソース毎の処理）を実行する事ができます。

・SmartCS の情報や、設定内容の取得

・SmartCS の設定

・SmartCS のシリアルポートに接続している監視対象機器の TTY ログ情報の取得/検索

・SmartCS に接続している監視対象機器へのオペレーション実行

REST API は HTTP プロトコルを使って通信を行い、SmartCS の提供する API リソー

スに対して、各メソッドと送信データをクライアントからリクエストして送信して様々なオペレー

ションを指定します。SmartCS は、レスポンスとして HTTP コードと指定されたオペレーシ

ョンに応じたデータをクライアントに返信します。

＜リクエスト時の、HTTP メソッドと CLI オペレーションのイメージ＞

HTTPメソッド 意味 CLI例

GET APIリソースの取得 show

POST APIリソースの作成等 create

PUT APIリソースの変更や更新 set, unset

DELETE APIリソースの削除 delete

＜レスポンス時の HTTP コード例＞

HTTPコード 意味 内容

200 OK オペレーションの成功

400 リクエストの不正等 オペレーションの失敗

3

1.3 SmartCS の処理概要

SmartCS の REST API 機能の処理概要について説明します。REST API 機能では

クライアントから SmartCS が提供する各 API リソースにアクセスを行い、リクエスト内容に

応じて機能毎のレスポンスを返します。

REST API のリクエストを受信した際の SmartCS の機能の処理イメージは、以下の図

及び表の内容となります。

リクエスト受信後に各 CLI 機能が動作して各機能を提供します。本ドキュメントでは各

CLI の詳細な仕様については説明しておらず、各 API リソースの仕様についてを説明して

おります。もしオペレーションがうまくいかない場合などは、CLI のエラーメッセージが出力

される場合もある為、「コマンドリファレンス」についても参照下さい。

処理 内容

各 APIリソースへの

アクセス

クライアントからのリクエストに応じて各 APIリソー

スにアクセスします。その際に、正しいメソッドが指

定されているか、適切なユーザ権限が付与されている

かなども確認します。

データチェック リクエスト時のデータが各 APIリソースの仕様に対し

て正しいかどうかをチェックします。

CLIの実行 リクエストデータをもとに、CLI コマンドを実行しま

す。

レスポンス CLIの実行結果に応じたレスポンスを返します。

4

1.4 動作要件

SmartCS の REST API 機能は、バージョン 3.0 から対応しております。各バージョン

の API リソース仕様については以下の表の通りとなります。

SmartCSのバージョン ベース URL

v3.0 http://<IP アドレス>:<http ポート番号>/api/v1/

ベース URL 以降の各アドレスについては、「4 章 API リソースとメソッド」を参照してくだ

さい。

5

6

2 章 準備

2.1 SmartCS の準備

2.1.1 REST API 機能の有効化・無効化

REST API 機能を使う為の SmartCS の設定について、下記に記載します。

(1) HTTP / HTTPS 機能の有効化

SmartCS の HTTP / HTTPS 機能を有効化します。

HTTP 機能を有効化する場合

(0)NS-2250# enable http

(0)NS-2250#

HTTPS 機能を有効化する場合

HTTP/HTTPS のポート番号を設定する場合

設定が有効化されたかどうかを確認する場合は、show service で指定した設定

が有効化（enable）されているか、ポート番号が変更されているか確認して下さい。ま

た、show tcp コマンドで指定したサービスの TCP ポートがオープンしているかご確

認下さい。

HTTP/HTTPS に REST API 機能を使ってアクセスできるセッション数は、最大

で同時 8 セッションとなります。

(0)NS-2250# enable https

(0)NS-2250#

(0)NS-2250# set http port 20080

(0)NS-2250# set https port 30443

(0)NS-2250#

7

(2) TTY マネージ機能の有効化

/ttymange API リソースにアクセスして、SmartCS に接続されている監視対象機

器に対してオペレーションを行う場合は、TTY マネージ機能を有効化する必要があ

ります。

TTY マネージ機能を有効化する場合

(0)NS-2250# enable ttymanage

(0)NS-2250#

8

2.1.2 ユーザの作成

SmartCS の REST API 機能にアクセスする為のユーザを作成する手順について説明

します。REST API 機能の提供する各 API リソースにアクセスする為のユーザは、拡張ユ

ーザグループ（extusr）に所属しているユーザとなります。

拡張ユーザグループに所属しているユーザは、SSH からのみアクセスする事ができます。

telnet、console 経由ではアクセスができません。

9

■SmartCS のユーザグループと実行できる機能について

10

 ユーザグループ 内容

normal

root

SmartCSに telnet, ssh, consoleから接続して装置の設定

や情報取得を行う事ができるユーザグループです。

portusr SmartCS のシリアルポートに接続されている監視対象機器

に telnet, sshから接続してオペレーションを行う事がで

きるユーザグループです。

extusr 設定により権限を付与することが出来るユーザグループ。

権限を付与していない場合でも normal グループユーザと

同様の権限があります。付与できる権限は rootグループ

のユーザと同じコマンド実行権限（管理者権限)、ttyマネ

ージオブジェクトのコマンド実行権限(tty マネージ機能

権限)、portusrグループのユーザと同じアクセスが可能な

権限（ポートユーザ権限）、verup グループのユーザと同

じアクセスが可能な権限（バージョンアップユーザ権限）

があります。

■normal

API リソースが提供する機能の中で、CLIの normalユーザ

権限で実行できる機能（showなどの状態表示系コマンド）

にアクセスできます。

showall権限を付与すると全ての showコマンドが実行可能

になります。

■root

API リソースが提供する機能の中で、CLI の管理者権限で

実行できる機能（create, set, unset,delete などの設定

系コマンド）にアクセスできます。

■ttymanage

API リソースが提供する機能の中で、シリアルポートに接

続されている監視対象機器の送受信ログの取得や検索、オ

ペレーションを実現する機能にアクセスできます。

setup

verup

log

SmartCSに FTP, SFTP(SSH)で接続を行い、コンフィグファ

イル、バージョンアップファイル、ログファイルを送受信

する事ができるユーザグループです。

11

(1) 拡張ユーザグループのユーザを作成

拡張ユーザグループに所属するユーザを作成します。

(0)NS-2250# create user api group extusr password

New password: xxxxx

Retype new password: xxxxx

(0)NS-2250#

(2) 管理者権限を設定する場合

作成した拡張ユーザグループのユーザに、管理者権限を設定します。

(3) tty マネージ機能権限を設定し、アクセス可能なポート番号を許可する場合

作成した拡張ユーザグループのユーザに、tty マネージ機能権限を設定して、ア

クセス可能なポート番号（例：1-4,16）を許可します。

(0)NS-2250# set user api permission root on

(0)NS-2250#

(0)NS-2250# set user api permission ttymanage on

(0)NS-2250# set user api port 1-4,16

(0)NS-2250#

12

2.1.3 セキュリティ

REST API 機能を使う場合、必要に応じてセキュリティ強化の為 Firewall(ipfilter)機能

を設定してご利用してください。

HTTP/HTTPS に設定されている TCP ポート番号を指定する事で、アクセス制限を行う

事ができます。

13

14

2.2 ログ情報

2.2.1 REST API のアクセスログ

REST API 機能を使ってアクセスしたユーザについては show log webapi コマンドで

確認する事ができます。

最新の 5 件のアクセスログを確認する場合

(0)NS-2250# show log webapi 5

2022 May 31 15:32:49 [10080] login success: restapi/172.31.8.41:42266

2022 May 31 15:32:49 [10080] logout: restapi/172.31.8.41:42266

2022 May 31 15:32:49 [10080] login success: restapi/172.31.8.41:42268

2022 May 31 15:32:49 [10080] logout: restapi/172.31.8.41:42268

2022 Jun 01 23:49:03 [10080] FAILED LOGIN FROM 172.31.8.41 FOR api,

Authentication failure.

(0)NS-2250#

アクセスしたユーザ名、IP アドレス、接続元のポート番号や、認証が成功したか、失敗し

たかについて確認する事ができます。

2.2.2 REST API のオペレーションログ

SmartCS の REST API 機能はリクエスト内容を最終的に CLI で実行します。その為、

各 API リソースにアクセスした際に実行したコマンドについては、show log command コ

マンドで確認する事が出来ます。

/system/version API リソースに api ユーザが REST API 機能でアクセスした場合

(0)NS-2250# show log command 5

2026 Jan 6 18:22:01 somebody/console: show ver

2026 Jan 6 18:22:04 somebody/console: show user login

2026 Jan 7 10:17:25 root/console: show ip

2026 Jan 7 11:16:42 api/webapi: show json version

2026 Jan 7 11:17:08 root/console: show log com 5

(0)NS-2250#

REST API 機能を使って、api ユーザが、/system/version API リソースにアクセスした

際に、show json version が実行されている事が確認できます。

15

3 章 REST API 機能

3.1 リクエスト

3.1.1 ベース URL

SmartCS の REST API 機能にアクセスする ベース URL は以下のアドレスとなります。

プロトコル ベース URL

HTTP http://<IP アドレス>:<http ポート番号>/api/v1/

HTTPS

https://<IP アドレス>:<https ポート番号>/api/v1/

IP アドレスは、v4/v6 の両方をサポートしています。

HTTP のポート番号のデフォルト値は 10080、HTTPS のポート番号のデフォルト値は

10443 となります。ポート番号はそれぞれ、1025～65000 の範囲で変更が可能です。

SmartCS の IP アドレス変更、HTTP/HTTPS のポート番号の変更方法については、取扱

説明書 または コマンドリファレンスを参照してください。

16

3.1.2 HTTP メソッド

SmartCS の REST API 機能は、以下の HTTP メソッドをサポートしています。

メソッド 説明

GET

指定した API リソースから情報取得する要求を行います。

SmartCS の CLI コマンドの、show 系コマンドのオペレーションとなり

ます。

POST

指定した API に新たなリソースを作成する要求を行います。また、

特定のオペレーションの実行についての要求を行います。

SmartCS の CLI コマンドの、create コマンドなどのオペレーションと

なります。

PUT

指定した API リソースについて変更/修正する要求を行います。

SmartCS の CLI コマンドの、set/unset コマンドなどのオペレーショ

ンとなります。

DELETE

指定した API リソースについて削除する要求を行います。

SmartCS の CLI コマンドの、delete コマンドなどのオペレーションと

なります。

API リソース毎に指定できるメソッドは異なり、未サポートのメソッドを指定した場合はエラー

となります。詳細は「4 章 API リソースとメソッド」を参照してください。

17

3.1.3 パラメータ

各メソッドはリクエスト時にパラメータを指定する事ができます。

リクエスト 内容

GETクエリ

URL のクエリとしてオプション値をパラメータとして指定する

事ができます。

例：

http://<IP>:<PORT>/api/v1/users/{username}

{username} 部分が GETクエリとして指定できるオプション

データとなります。指定できる内容は各 API リソースによっ

て異なります。

リクエストボディ

リクエストボディとして、JSON 形式のオプション値をパラメ

ータとして指定する事ができます。その際、HTTP ヘッダの

コンテンツタイプ（Content-Type）として、

application/json

を指定してください。

詳細は「4 章 API リソースとメソッド」を参照してください。

18

3.2 認証

3.2.1 Basic 認証

SmartCS の REST API 機能はリクエスト時の認証として Basic 認証をサポートしていま

す。Authorization ヘッダに、ユーザ名（username）とパスワード（password）のペアを指

定してください。SmartCS に登録されている拡張ユーザが対象となります。

API リソース毎にアクセス可能なユーザ権限が異なります、詳細は「2.3 項 ユーザ権限と

API リソース」を参照してください。

19

3.3 レスポンス

3.3.1 ステータスコード

SmartCS の REST API 機能は各 API リソースへのアクセス後、レスポンスとして以下

のステータスコードを返します。

ステータス

コード

意味 概要

200

OK REST API のリクエストが正常に処理できた場合のス

テータスコードとなります。

400

Bad Request REST API のリクエストがなんらかのエラーによって

正常に処理できなかった場合のステータスコードと

なります。エラー理由については、エラー時に返す

JSON データの “message”を確認してください。

各エラーの詳細については「3.4 共通エラー」項を参

照ください。

20

3.3.2 共通データ

各 API リソースへのアクセス後、ステータスコードとともに、JSON 形式のデータをレスポ

ンスとして返します。JSON 形式のデータは共通データと各 API リソース独自のレスポンス

データに分かれており、共通データは “info” をキー としたオブジェクト型で格納されてい

ます。

＜共通データ＞

info 型 意味

result 数値 リクエストが正常に処理された場合は 0

エラーが発生した場合は 1 以上の値を返します

message 文字列 エラーメッセージが格納されます。

リクエストが正常に処理された場合、空文字列(“”)が格

納されます。

エラーメッセージ例

・認証やアクセス権限に関する各 API リソース

共通で発生するエラー

 「3.4 共通エラー」項を参照下さい。

・各 API リソースのパラメータや、API リソースを介して

 実行される CLI エラー

 「4 章 API リソース」項の各 URL のエラーを

 参照下さい。

例： リクエストが正常に処理された場合

{
 "info": {
 "result": 0,
 "message": ""
 },
 "systeminfo": {
 "Boot": {
 "System": {
 "Version": "3.0d",
 "Build": "2022-05-20",

共通データ

各 API リソースの

レスポンスデータ

21

例： リクエストが正常に処理されなかった場合

{
 "info": {
 "result": 1,
 "message": "Error: Invalid request. "
 }
}

共通データ

22

3.4 共通エラー

各 API リソース共通で発生するエラー内容と、エラーが発生した場合の対処方法につい

て説明します。

メッセージ 内容と対処

Error: Invalid request.(400) 指定した API リソースにアクセスする為の情報に不

備がある場合に表示されます。

Error: Invalid request.(404) 指定した API リソースに存在しない URL を指定した

場合に表示されます。

Error: Invalid request.(405) 指定した API リソースがサポートしていないメソッ

ドを指定した場合に表示されます。

Error: Invalid request.(411) リクエスト情報に必要なヘッダ情報（content-

length）が含まれていない場合に表示されます。

Error: Invalid request.(417) リクエスト情報に、未サポートのヘッダ情報

（Expect）が含まれている場合に表示されます。

Error: Invalid request.(500) リクエストを受信後、SmartCS の Web サーバでエラ

ーが発生した場合に表示されます。

Error: Invalid request.(501) サポート外のメソッドを指定された場合に表示され

ます。

23

メッセージ 内容と対処

Error: Invalid request.(601) リクエスト情報のヘッダに必要なパラメータ

（Authorization）が含まれていない場合に表示され

ます。

Error: Invalid request.(602) リクエスト情報のヘッダで指定したユーザが存在し

ない、または指定した API リソースにアクセスする

為の設定（権限）が与えられていない場合などに表

示されます。指定しているユーザ情報や SmartCS の

ユーザ設定を確認してください。

Error: Invalid request.(901) リクエストを受信後、SmartCS の Web サーバでエラ

ーが発生した場合に表示されます。

これらのエラーが発生した場合、各 API リソースの仕様を参考に、リクエスト情報（URL

や指定しているオプションパラメータ）を確認してください。

24

4 章 API リソースとメソッド

SmartCS の REST API 機能が提供するリソース一覧となります。

本章では、各 API リソースの仕様（概要、リクエスト、レスポンス、エラー、実行例）につい

て説明します。

分類 URL メソッド 概要

SYSTEM /system/version GET システム情報の取得

USERS /users GET ユーザ情報（一覧）の取得

POST ユーザ作成

/users/{username} GET ユーザ情報の取得

PUT ユーザ情報の編集

DELETE ユーザ削除

/users/login GET ログインユーザ情報の取得

SERIAL /serial/tty GET シリアル情報(一覧)の取得

/serial/tty/{ttylist}

GET シリアル情報の取得

PUT シリアル情報の編集

/serial/hangup/tty/{ttylist} POST シリアルの hangup

TTYMANAGE

/ttymanage POST TTY マネージ機能を使ってシリアル

ポートに文字列の送受信スクリプ

トを実行

LOG/HISTORY /log/history/console GET SmartCS のコンソールログ情報の取

得

/log/history/command GET SmartCS のコマンドログ情報の取得

/log/history/ttysend GET SmartCS の ttysend ログ情報の取得

/log/history/webapi GET SmartCS の webapi ログ情報の取得

LOG/SERIAL /log/serial/tty/{ttyno} GET SmartCS の tty ログ情報の取得

/log/serial/files/tty/{ttyno} GET SmartCS の tty ログ情報の取得（DL）

/log/serial/search/tty/{ttyno} GET SmartCS の tty ログ情報を検索

25

4.1 SYSTEM

4.1.1 /system/version (GET)

4.1.1.1 概要

システム情報を取得します。

4.1.1.2 リクエスト

項目 内容

アクセス可能なユーザ権限 normal

root

オプションパラメータ

この API リソースは指定可能なオプションはありません。

26

4.1.1.3 レスポンス

項目 内容

フォーマット JSON（オブジェクト型）

共通データ 「3.3.2 共通データ」参照

＜レスポンスデータ＞

キー名 内容

systeminfo Boot System Version 起動しているシステムソフトウェアバ

ージョン

Build 起動しているシステムソフトウェア作

成日

Unit 起動しているシステム面

Status 起動種別

Config Unit 起動しているスタートアップの保存面

Startup 起動しているスタートアップの番号

ROM Version BootROM バージョン

SystemUpTime システム起動時刻

HW Model モデル名

SerialNo シリアル番号

MAC Local_Address イーサネットアドレス

Number イーサネットアドレスの個数

MainBoardCPU_Model メインボード CPU

MainBoardCPU_Clock メインボード CPU 周波数

MainMemory メモリ容量

System Main メイン面のシステムソフトウェアバー

ジョン

Backup バックアップ面のシステムソフトウェ

アバージョン

27

4.1.1.4 エラー

このリソースは共通エラー以外のエラーを返しません。

4.1.1.5 実行例

※実行例は整形して記載しています

$ curl -u api:api -X GET http://<IP>:<PORT>/api/v1/system/version

{
 "info": {
 "result": 0,
 "message": ""
 },
 "systeminfo": {
 "Boot": {
 "System": {
 "Version": "3.0",
 "Build": "2022-05-26",
 "Unit": "main"
 },
 "Status": "Reboot",
 "Config": {
 "Unit": "external",
 "Startup": "startup1"
 },
 "ROM": {
 "Version": "1.1"
 }
 },
 "SystemUpTime": "2022/05/26 15:29:22",
 "HW": {
 "Model": "NS-2250-16",
 "SerialNo": "56000050",
 "MAC": {
 "Local_Address": "XX:XX:XX:XX:XX:XX",
 "Number": "2"
 },
 "MainBoardCPU_Model": "e500v2",
 "MainBoardCPU_Clock": "533.333328MHz",
 "MainMemory": "1025264"
 },
 "System": {
 "Main": "3.0",
 "Backup": "2.2"
 }
 }
}
$

28

4.2 USERS

4.2.1 /users (GET)

4.2.1.1 概要

ユーザ情報の一覧を取得します。

4.2.1.2 リクエスト

項目 内容

アクセス可能なユーザ権限 normal

root

オプションパラメータ

この API リソースは指定可能なオプションはありません。

29

4.2.1.3 レスポンス

項目 内容

フォーマット JSON（オブジェクト型）

共通データ 「3.3.2 共通データ」参照

＜レスポンスデータ＞

キー名 内容

users

(配列)

name ユーザ名

group ユーザの所属しているグループ名

encrypt ハッシュ化されたパスワード

uid ユーザグループ ID の情報

port シリアルポートの許可リスト

permission showall 拡張ユーザに設定されている showコマンド実行権

限を表示

on : 全ての show コマンド実行権限を有効

off: 無効

root 拡張ユーザに設定されている管理者権限を表示

on : 有効

off: 無効

ttymanage 拡張ユーザに設定されている tty マネージ機能権

限を表示

on : 有効

off: 無効

portusr 拡張ユーザに設定されているポートユーザ権限を

表示

on : 有効

off: 無効

verup 拡張ユーザに設定されているバージョンアップユ

ーザ権限を表示

on : 有効

off: 無効

sshkey

(配列)

要素 1

[0]

メソッドを表示

要素 2 公開鍵を表示

30

[1]

31

4.2.1.4 エラー

このリソースは共通エラー以外のエラーは返しません。

4.2.1.5 実行例

※本実行例は一部の情報について抜粋しています。

※実行例は整形して記載しています

$ curl -u api:api -X GET http://<IP>:<PORT>/api/v1/users

{
 "info": {
 "result": 0,
 "message": ""
 },
 "users": [
 {
 "name": "root",
 "group": "root",
 "encrypt": "",
 "uid": 0,
 "port": "",
 "permission": "",
 "sshkey": ""
 },
 {
 "name": "somebody",
 "group": "normal",
 "encrypt": "",
 "uid": 100,
 "port": "",
 "permission": "",
 "sshkey": ""
 },
 "name": "api",
 "group": "extusr",
 "encrypt": "SPS.H.EC3v2a1JRKDVqU.a9k1OIcA0",
 "uid": 401,
 "port": "1-16",
 "permission": {
 "showall": "off",
 "root": "on",
 "ttymanage": "on",
 "portusr": "off",
 "verup": "off"
 }
]
}
$

32

4.2.2 /users (POST)

4.2.2.1 概要

ユーザを作成します。

4.2.2.2 リクエスト

項目 内容

アクセス可能なユーザ権限 root

オプションパラメータ

リクエストボディとして JSON フォーマットのデータを

オブジェクト型で指定します。

＜リクエストボディのデータフォーマット＞

キー名 バリューの型 内容

name

(必須)

文字列 ユーザ名を指定します。

■文字長 ：16 文字まで

■文字種 ：英数字 _ - (先頭文字は英字)

■default：無し

group

(必須)

文字列 ユーザグループ名を指定します。

■指定可能な値：

normal, extusr, portusr, setup, verup, log

■default：無し

password 文字列 パスワードを平文で指定します。

■文字長 ：64 文字まで

■文字種 ：英数字 SPACE

 ! # % * + , - . / : = @ _ ~

■default：無し

■備考 ：password, encrypt が両方設定されている

場合は、password が優先されます。

encrypt 文字列 パスワードをハッシュ値で指定します。

※SmartCS の show config running で出力される値

33

キー名 バリューの型 内容

port 文字列

or

数値

ポートユーザ、拡張ユーザに許可するシリアルポート

の番号を指定します。

■設定値

・1 ポートのみを指定する場合、数値での指定が

可能です。

・複数ポートを指定する場合、ttylist 形式を使い

文字列で指定が可能です。

例：1,2,3,4,10,16 ポート

 “1-4,10,16”

・設定する値が ””の場合、現在設定されている値を

 削除します。

■default ：無し

uid 数値 作成するユーザのユーザ ID を指定します。

■設定値

 100～190：一般ユーザ

 401～410：拡張ユーザ

 501～599：ポートユーザ

 198 ：セットアップユーザ

 199 ：バージョンアップユーザ

 200 ：ポートログ取得ユーザ

■default ：無し

 (未指定時は自動で割り当てます)

permission オブジェクト 拡張ユーザの場合、付与する権限を指定します。

■設定値

 全ての show コマンド実行権限を設定する場合

 “showall”: “on”

管理者権限を設定する場合

 “root”: “on”

 tty マネージ機能権限を設定する場合

 “ttymanage”: “on”

 ポートユーザ権限を設定する場合

 “portusr”: “on”

 バージョンアップユーザ権限を設定する場合

 “verup”: “on”

■default

34

 {

 “showall”: “off”,

 “root”: “off”,

 “ttymanage”: “off”,

 “portusr”: “off”,

 “verup”: “off”

 }

35

＜CLI の実行順番＞

実行順 リクエストの延長で実行する CLI コマンド

1 create user <username> group <group> [uid <userid>]

 [port <enable_port_list>] [{password | encrypt <string>}]

※password, encrypt の両方を指定された場合は password を設定

2

set user <username> permission { normal on showall{ on| off } | root

| ttymanage | portusr | verup {on | off }}

3 set user <username> sshkey <method> <public-key>

キー名 バリューの型 内容

sshkey 配列 ssh の公開鍵を設定します。

■設定値

 [“<method>”, “<public-key>”]

 Method は 20 文字まで

 Public-key は 720 文字まで

■default ：無し

36

4.2.2.3 レスポンス

項目 内容

フォーマット JSON（オブジェクト型）

共通データ 「3.3.2 共通データ」参照

4.2.2.4 エラー

このリソースは共通エラー以外に以下のエラーが発生します。

メッセージ

(ステータスコード)

内容と対処

Error: Invalid json data

(400)

リクエストボディの内容が JSON フォーマットでない場

合に表示されます。

Error: Invalid request body.

(400)

リクエストボディにオプションパラメータの指定がない

場合や、仕様以外のパラメータが指定されている場合に

表示されます。

Error: The required

parameter is missing.($key)

(400)

リクエストボディに必須パラメータが無い場合に表示さ

れます。

Error: Invalid argument

value.($key)

(200)

リクエストボディで指定されたパラメータが、正しく処

理できない場合に表示されます。

Error: $key contains non-

usable characters.

(200)

出力された場合は、リクエストボディの JSON データの内容を確認してください。

37

4.2.2.5 実行例

リクエストボディの JSON データ

$ cat users-post.json
{
 "name": "testuser",
 "group": "extusr",
 "password": "abcdefghijklmn51",
 "encrypt": "UuSOuT.h8r6nSBV0xaeR1bRhLf9Zx/",
 "uid": 403,
 "port": "1-4",
 "permission": {
 "showall": "off",
 "root": "off",
 "ttymanage": "on",
 "portusr": "off",
 "verup": "off"
 },
 "sshkey": [
 "ssh-rsa","AAAAB3NzaC1yc2EAAAADAQABA3FO"
]
}
$

※リクエストボディの JSON データ例

※実行例は整形して記載しています

$ curl -u api:api -X POST
-H "Content-Type: application/json"
http://<IP>:<PORT>/api/v1/users --data @./users-post.json

{
 "info": {
 "result": 0,
 "message": ""
 }
}
$

38

4.2.3 /users/{username} (GET)

4.2.3.1 概要

指定したユーザ情報を取得します。

4.2.3.2 リクエスト

項目 内容

アクセス可能なユーザ権限 normal

root

オプションパラメータ GET クエリでユーザ名を指定します。

＜GET クエリによるパラメータの指定＞

パラメータ 内容

{username}

情報を取得する作成済みのユーザ名を指定します。

39

4.2.3.3 レスポンス

項目 内容

フォーマット JSON（オブジェクト型）

共通データ 「3.3.2 共通データ」参照

＜レスポンスデータ＞

キー名 内容

users

(配列)

name ユーザ名

group ユーザの所属しているグループ名

encrypt ハッシュ化されたパスワード

uid ユーザグループ ID の情報

port シリアルポートの許可リスト

permission showall 拡張ユーザに設定されている showコマンド実行権

限を表示

on : 全ての show コマンド実行権限を有効

off: 無効

root 拡張ユーザに設定されている管理者権限を表示

on : 有効

off: 無効

ttymanage 拡張ユーザに設定されている tty マネージ機能権

限を表示

on : 有効

off: 無効

portusr 拡張ユーザに設定されているポートユーザ権限を

表示

on : 有効

off: 無効

verup 拡張ユーザに設定されているバージョンアップユ

ーザ権限を表示

on : 有効

off: 無効

sshkey

(配列)

要素 1

[0]

メソッドを表示

要素 2 公開鍵を表示

40

※4.2.1項のレスポンスデータと同じ内容となります。

users配列に格納されているユーザは指定したユーザ名のみとなます。

[1]

41

4.2.3.4 エラー

このリソースは共通エラー以外に以下のエラーが発生します。

メッセージ

(ステータスコード)

内容と対処

Error: Invalid request.

(400)

GET クエリで指定したユーザ名に未サポートの文字列が

指定される場合に表示されます。

GET クエリで指定したユーザ名を確認してください。

Error: user {username} does

not exist.(103)

(200)

指定したユーザが存在しない場合に表示されます。

GET クエリで指定したユーザ名を確認してください。

4.2.3.5 実行例

$ curl -u api:api -X GET http://<IP>:<PORT>/api/v1/users/somebody

{
 "info": {
 "result": 0,
 "message": ""
 },
 "users": [
 {
 "name": "somebody",
 "group": "normal",
 "encrypt": "",
 "uid": 100,
 "port": "",
 "permission": "",
 "sshkey": ""
 }
]
}

$

※実行例は整形して記載しています

42

4.2.4 /users/{username} (PUT)

4.2.4.1 概要

指定したユーザ情報を編集します。

4.2.4.2 リクエスト

項目 内容

アクセス可能なユーザ権限 root

オプションパラメータ

GET クエリでユーザ名を指定します。

指定したユーザの情報をリクエストボディとして JSON

フォーマットのデータをオブジェクト型で指定します。

※設定変更するキー名とバリューのペアのみ

 （設定変更の対象データのみ）

でもユーザ情報の編集を行う事ができます。

＜GET クエリによるパラメータの指定＞

＜リクエストボディのデータフォーマット＞

キー名 バリューの型 内容

password 文字列 パスワードを平文で指定します。

■文字長 ：64 文字まで

■文字種 ：英数字 SPACE

 ! # % * + , - . / : = @ _ ~

■default：無し

■備考 ：password, encrypt が両方設定されている

場合は、password が優先されます。

encrypt 文字列 パスワードをハッシュ値で指定します。

※SmartCS の show config running で出力される値

パラメータ 内容

{username}

情報を編集する作成済みのユーザ名を指定します。

43

キー名 バリューの型 内容

port 文字列

or

数値

ポートユーザ、拡張ユーザに許可するシリアルポート

の番号を指定します。

■設定値

・1 ポートのみを指定する場合、数値での指定が

可能です。

・複数ポートを指定する場合、ttylist 形式を使い

文字列で指定が可能です。

例：1,2,3,4,10,16 ポート

 “1-4,10,16”

・設定する値が ””の場合、現在設定されている値を

 削除します。

permission オブジェクト 拡張ユーザの場合、付与する権限を指定します。

■設定値

 全ての show コマンド実行権限を設定する場合

 “showall”: “on”

 管理者権限を設定する場合

 “root”: “on”

 tty マネージ機能権限を設定する場合

 “ttymanage”: “on”

 ポートユーザ権限を設定する場合

 “portusr”: “on”

 バージョンアップユーザ権限を設定する場合

 “verup”: “on”

■default

 {

 “showall”: “off”,

 “root”: “off”,

 “ttymanage”: “off”,

 “portusr”: “off”,

 “verup”: “off”

 }

sshkey 配列 ssh の公開鍵を設定します。

■設定値

 [“<method>”, “<public-key>”]

 Method は 20 文字まで

44

 Public-key は 720 文字まで

・設定する値が ””の場合、現在設定されている値を

 削除します。

■default ：無し

※name, uid, group 情報をリクエストボディとして指定してもエラーにはなりません。

 （ユーザ情報は GET クエリの値を使う為、参照もされません）

※すべてのキー/バリューペアを指定する必要はありません。

 変更対象のデータのみで設定変更を行うことができます。

45

＜CLI の実行順番＞

実行順 リクエストの延長で実行する CLI コマンド

1 set user <username> {password | encrypt <string>}}

※password, encrypt の両方を指定された場合は password を設定

2

set user <username> port <enable port_list >

又は

unset user <username> port

3 set user <username> permission { normal on showall{ on| off } | root

| ttymanage | portusr | verup {on | off }}

4 set user <username> sshkey <method> <public-key>

又は

unset user <username> sshkey

46

4.2.4.3 レスポンス

項目 内容

フォーマット JSON（オブジェクト型）

共通データ 「3.3.2 共通データ」参照

4.2.4.4 エラー

このリソースは共通エラー以外に以下のエラーが発生します。

メッセージ

(ステータスコード)

内容と対処

Error: Invalid json data

(400)

リクエストボディの内容が JSON フォーマットでない場

合に表示されます。

Error: Invalid request.

(400)

GET クエリで指定したユーザ名に未サポートの文字列が

指定される場合に表示されます。

GET クエリで指定したユーザ名を確認してください。

Error: Invalid request body.

(400)

リクエストボディにオプションパラメータの指定がない

場合や、仕様以外のパラメータが指定されている場合に

表示されます。

Error: Invalid argument

value.($key)

(200)

リクエストボディで指定されたパラメータが、正しく処

理できない場合に表示されます。

Error: $key contains non-

usable characters.

(200)

Error:

※その他エラーメッセージ

(200)

指定したユーザが存在しない場合や、リクエストボディ

リクエストボディで指定されたパラメータが、正しく処

理できない場合に表示されます。

出力された場合は、GET クエリやリクエストボディの JSON データの内容を確認してく

ださい。

47

4.2.4.5 実行例

リクエストボディの JSON データ

$ cat users-put.json
{
 "name": "testuser",
 "group": "extusr",
 "password": "abcdefghijklmn51",
 "encrypt": "UuSOuT.h8r6nSBV0xaeR1bRhLf9Zx/",
 "uid": 403,
 "port": "1-4,8,10",
 "permission": {
 "showall": "off",
 "root": "off",
 "ttymanage": "on",
 "portusr": "off",
 "verup": "off"
 },
 "sshkey": [
 "ssh-rsa","AAAAB3NzaC1yc2EAAAADAQABA3FO"
]
}
$

※リクエストボディの JSON データ例

（設定変更するデータ行のみでもユーザ情報の編集を行う事ができます。）

※実行例は整形して記載しています

$ curl -u api:api -X PUT -H "Content-Type: application/json"
http://<IP>:<PORT>/api/v1/users/testuser --data @./users-put.json

{
 "info": {
 "result": 0,
 "message": ""
 }
}
$

48

4.2.5 /users/{username} (DELETE)

4.2.5.1 概要

指定したユーザを削除します。

4.2.5.2 リクエスト

項目 内容

アクセス可能なユーザ権限 root

オプションパラメータ GET クエリ

＜GET クエリによるパラメータの指定＞

パラメータ 内容

{username}

削除する作成済みのユーザ名を指定します。

49

4.2.5.3 レスポンス

項目 内容

フォーマット JSON（オブジェクト型）

共通データ 「3.3.2 共通データ」参照

4.2.5.4 エラー

このリソースは共通エラー以外に以下のエラーが発生します。

メッセージ

(ステータスコード)

内容と対処

Error: Invalid request.

(400)

GET クエリで指定したユーザ名に未サポートの文字列が

指定される場合に表示されます。

GET クエリで指定したユーザ名を確認してください。

Error: user {username} does

not exist.(103)

(200)

指定したユーザが存在しない場合に表示されます。

GET クエリで指定したユーザ名を確認してください。

4.2.5.5 実行例

$ curl -u api:api -X DELETE http://<IP>:<PORT>/api/v1/users/testuser1

{
 "info": {
 "result": 0,
 "message": ""
 },
}

$

※実行例は整形して記載しています

50

4.2.6 /users/login (GET)

4.2.6.1 概要

現在ログインしているユーザ情報を取得します。

4.2.6.2 リクエスト

項目 内容

アクセス可能なユーザ権限 normal

root

オプションパラメータ この API リソースは指定可能なオプションはありません。

4.2.6.3 レスポンス

項目 内容

フォーマット JSON（オブジェクト型）

共通データ 「3.3.2 共通データ」参照

＜レスポンスデータ＞

キー名 内容

user_login

(配列)

User-Name ログインしているユーザ名

Device 接続に使用しているデバイス名またはデバイス番号

Login-Time ログインした時間

Idle 最後に操作を行ってからの経過時間

Remote-Host 接続しているホストの IP アドレス または 名前

51

4.2.6.4 エラー

このリソースは共通エラー以外のエラーは返しません。

4.2.6.5 実行例

$ curl -u api:api -X GET http://<IP>:<PORT>/api/v1/users/login

{
 "info": {
 "result": 0,
 "message": ""
 },
 "user_login": [
 {
 "User-Name": "somebody",
 "Device": "console",
 "Login-Time": "May 27 00:05:18",
 "Idle": "00:00",
 "Remote-Host": ""
 },
 {
 "User-Name": "api",
 "Device": "0",
 "Login-Time": "May 26 22:06:18",
 "Idle": "00:20",
 "Remote-Host": "172.31.8.41"
 }
]
}

$

※実行例は整形して記載しています

52

4.3 SERIAL

4.3.1 /serial/tty (GET)

4.3.1.1 概要

各 TTY のシリアル情報の一覧を取得します。

4.3.1.2 リクエスト

項目 内容

アクセス可能なユーザ権限 normal

root

オプションパラメータ

この API リソースは指定可能なオプションはありません。

53

4.3.1.3 レスポンス

項目 内容

フォーマット JSON（オブジェクト型）

共通データ 「3.3.2 共通データ」参照

＜レスポンスデータ＞

キー 内容

ttylist

(配列)

tty シリアルポートの番号

config baud シリアルポートの転送速度

bitchar シリアルポートのデータビット長

parity シリアルポートのパリティ

stop シリアルポートのストップビット長

flow シリアルポートのフロー制御

detect_dsr DSR 信号遷移検出機能の動作設定

label 監視対象機器のラベル名

status DSR 信号線 DSR の現在の状態

CTS 信号線 CTS の現在の状態

DTR 信号線 DTR の現在の状態

RTS 信号線 RTS の現在の状態

CD 信号線 CD の現在の状態

stats TX_Octets 送信オクテット数

RX_Octets 受信オクテット数

Error_Parity 受信パリティーエラーの回数

Error_Framing 受信フレーミングエラーの回数

Error_Overrun 受信オーバーランの回数

Break_Count 受信ブレークの回数

54

4.3.1.4 エラー

このリソースは共通エラー以外のエラーを返しません。

4.3.1.5 実行例

$ curl -u api:api -X GET http://<IP>:<PORT>/api/v1/serial/tty

{
 "info": {
 "result": 0,
 "message": ""
 },
 "ttylist": [
 {
 "tty": 1,
 "config": {
 "baud": 115200,
 "bitchar": 8,
 "parity": "none",
 "stop": 1,
 "flow": "none",
 "detect_dsr": "off",
 "label": "NS-2250-48"
 },
 "status": {
 "DSR": "on",
 "CTS": "on",
 "DTR": "on",
 "RTS": "on",
 "CD": "on"
 },
 "stats": {
 "TX_Octets": 0,
 "RX_Octets": 0,
 "Error_Parity": 0,
 "Error_Framing": 0,
 "Error_Overrun": 0,
 "Break_Count": 0
 }
 },
 {
 "tty": 2,
 "config": {
 "baud": 9600,

 ：

 省略

 ：
 }
]
}

$

 ※実行例は整形して記載しています

55

4.3.2 /serial/tty/{ttylist} (GET)

4.3.2.1 概要

指定した TTY のシリアル情報を取得します。

4.3.2.2 リクエスト

項目 内容

アクセス可能なユーザ権限 normal

root

オプションパラメータ GET クエリ

＜GET クエリによるパラメータの指定＞

パラメータ 内容

{ttylist}

TTY 番号を ttylist 形式で指定します。

例：tty 番号 1,2,3,4,10 を指定する場合

 1-4,10

56

4.3.2.3 レスポンス

項目 内容

フォーマット JSON（オブジェクト型）

共通データ 「3.3.2 共通データ」参照

＜レスポンスデータ＞

キー 内容

ttylist

(配列)

tty シリアルポートの番号

config baud シリアルポートの転送速度

bitchar シリアルポートのデータビット長

parity シリアルポートのパリティ

stop シリアルポートのストップビット長

flow シリアルポートのフロー制御

detect_dsr DSR 信号遷移検出機能の動作設定

label 監視対象機器のラベル名

status DSR 信号線 DSR の現在の状態

CTS 信号線 CTS の現在の状態

DTR 信号線 DTR の現在の状態

RTS 信号線 RTS の現在の状態

CD 信号線 CD の現在の状態

stats TX_Octets 送信オクテット数

RX_Octets 受信オクテット数

Error_Parity 受信パリティーエラーの回数

Error_Framing 受信フレーミングエラーの回数

Error_Overrun 受信オーバーランの回数

Break_Count 受信ブレークの回数

57

4.3.2.4 エラー

このリソースは共通エラー以外に以下のエラーが発生します。

メッセージ

(ステータスコード)

内容と対処

Error: Invalid request.

(400)

GETクエリで指定した TTYリスト(ttylist)に未サポート

の文字列や仕様外の値が指定された場合に表示されま

す。

GET クエリで指定した ttylist を確認してください。

Error: "show json tty

1,16,17 <-- syntax error

[tty number (n[-n][,n[-

n]]... n=1-16 listmax=16)]"

※その他CLIのエラーメッセー

ジ

(200)

指定した tty 番号が存在しない場合や、GET クエリで指

定されたパラメータが、正しく処理できない場合に表示

されます。

58

4.3.2.5 実行例

$ curl -u api:api -X GET http://<IP>:<PORT>/api/v1/serial/tty/1,16

{
 "info": {
 "result": 0,
 "message": ""
 },
 "ttylist": [
 {
 "tty": 1,
 "config": {
 "baud": 9600,
 "bitchar": 8,
 "parity": "none",
 "stop": 1,
 "flow": "none",
 "detect_dsr": "off",
 "label": "NS-2250-48"
 },
 "status": {
 "DSR": "on",
 "CTS": "on",
 "DTR": "on",
 "RTS": "on",
 "CD": "on"
 },
 "stats": {
 "TX_Octets": 0,
 "RX_Octets": 0,
 "Error_Parity": 0,
 "Error_Framing": 0,
 "Error_Overrun": 0,
 "Break_Count": 0
 }
 },
 {
 "tty": 16,
 "config": {
 "baud": 115200,

 ：

 省略

 ：
 }
]
}

$

※実行例は整形して記載しています

59

4.3.3 /serial/tty/{ttylist} (PUT)

4.3.3.1 概要

指定した TTY のシリアル情報を編集します。

4.3.3.2 リクエスト

項目 内容

アクセス可能なユーザ権限 root

オプションパラメータ GET クエリ

指定した各 TTY の設定をリクエストボディとして、JSON フ

ォーマットのデータをオブジェクト型で指定します。

※設定変更するキー名とバリューのペアのみ

 （設定変更の対象データのみ）

でシリアル情報の編集を行う事ができます。

＜GET クエリによるパラメータの指定＞

＜リクエストボディのデータフォーマット＞

キー名 バリューの型 内容

baud 数値 シリアルポートの転送速度を指定します。

■指定可能な値：

2400, 4800, 9600, 19200, 38400, 57600, 115200

■default：無し

パラメータ 内容

{ttylist}

TTY 番号を ttylist 形式で指定します。

例：tty 番号 1,2,3,4,10 を指定する場合

 1-4,10

60

キー名 バリューの型 内容

bitchar 数値 シリアルポートのデータビット長を指定します。

■指定可能な値

 7,8

■default：無し

parity 文字列 シリアルポートのパリティを指定します。

■指定可能な値：

even, odd, none

■default：無し

stop 数値 シリアルポートのストップビット長を指定します。

■指定可能な値

 1, 2

■default：無し

flow 文字列 シリアルポートのフロー制御を指定します。

■指定可能な値

 xon, rs, none

■default：無し

detect_dsr 文字列 DSR 信号遷移検出機能の動作設定を指定します。

■指定可能な値

 on_edge, on_polling, off

■default：無し

label 文字列 監視対象機器のラベル名を指定します。

■文字長 ：1-32 文字

■文字種 ：英数字 SPACE

 @ _ - .

■default：無し

■備考

・設定する値が ””の場合、現在設定されている値を

 削除します。

61

＜CLI の実行順番＞

実行順 リクエストの延長で実行する CLI コマンド

1 set tty <ttylist> baud

2

set tty <ttylist> bitchar

3 set tty <ttylist> parity

4 set tty <ttylist> stop

5 set tty <ttylist> flow

6 set tty <ttylist> detect_dsr

7 set portd tty <ttylist> label <"string">

又は

 unset portd tty < ttylist> label

62

4.3.3.3 レスポンス

項目 内容

フォーマット JSON（オブジェクト型）

共通データ 「3.3.2 共通データ」参照

4.3.3.4 エラー

このリソースは共通エラー以外に以下のエラーが発生します。

メッセージ

(ステータスコード)

内容と対処

Error: Invalid json data

(400)

リクエストボディの内容が JSON フォーマットでない場

合に表示されます。

Error: Invalid request.

(400)

GET クエリで指定したユーザ名に未サポートの文字列が

指定される場合に表示されます。

GET クエリで指定したユーザ名を確認してください。

Error: Invalid argument

value.($key)

(200)

リクエストボディで指定されたパラメータが、正しく処

理できない場合に表示されます。

Error: $key contains non-

usable characters.

(200)

Error:

※その他エラーメッセージ

(200)

GET クエリで指定した ttylist の値が範囲外（NS-2250-

16 で、17 を指定）など、指定されたパラメータが、正し

く処理できない場合に表示されます。

出力された場合は、GET クエリ、リクエストボディの JSON データ内容を確認してくだ

さい。

63

4.3.3.5 実行例

リクエストボディの JSON データ

$ cat tty-put.json
{
 "baud": 9600,
 "bitchar": 8,
 "parity": "none",
 "stop": 1,
 "flow": "none",
 "detect_dsr": "off",
 "label": "SWITCH-1"
}

$

※リクエストボディの JSON データ例

（設定変更するデータ行のみでもシリアル情報の編集を行う事ができます。）

※実行例は整形して記載しています

$ curl -u api:api -X PUT -H "Content-Type: application/json"
http://<IP>:<PORT>/api/v1/serial/tty/16 --data @./tty-put.json

{
 "info": {
 "result": 0,
 "message": ""
 }
}

$

64

4.3.4 /serial/hangup/tty/{ttylist} (POST)

4.3.4.1 概要

指定した TTY をハングアップします。

4.3.4.2 リクエスト

項目 内容

アクセス可能なユーザ権限 root

オプションパラメータ GET クエリ

POST

※リクエストボディデータはなし

＜GET クエリによるパラメータの指定＞

パラメータ 内容

{ttylist}

TTY 番号を ttylist 形式で指定します。

例：tty 番号 1,2,3,4,10 を指定する場合

 1-4,10

65

4.3.4.3 レスポンス

項目 内容

フォーマット JSON（オブジェクト型）

共通データ 「3.3.2 共通データ」参照

4.3.4.4 エラー

このリソースは共通エラー以外に以下のエラーが発生します。

メッセージ

(ステータスコード)

内容と対処

Error: Invalid request.

(400)

GET クエリで指定したユーザ名に未サポートの文字列が

指定される場合に表示されます。

GET クエリで指定したユーザ名を確認してください。

Error:

※その他エラーメッセージ

(200)

GET クエリで指定した ttylist の値が範囲外（NS-2250-

16 で、17 を指定）など、指定されたパラメータが、正し

く処理できない場合に表示されます。

66

4.3.4.5 実行例

リクエストボディの JSON データ

$ curl -u api:api -X POST -H "Content-Type: application/json" –d ""
http://<IP>:<PORT>/api/v1/serial/hangup/tty/16

{
 "info": {
 "result": 0,
 "message": ""
 }
}

$

※実行例は整形して記載しています

67

4.4 TTYMANAGE

4.4.1 /ttymanage (POST)

4.4.1.1 概要

TTY マネージ機能を使ってシリアルポートに文字列の送受信を実行します。

4.4.1.2 リクエスト

項目 内容

アクセス可能なユーザ権限 ttymanage

オプションパラメータ

リクエストボディとして JSON フォーマットのデータを

オブジェクト型で指定します。

＜リクエストボディのデータフォーマット＞

（１）基本機能

キー名 型 内容

tty

(必須)

数値

(文字列)

tty 番号を指定します。

■範囲 ：1-48

■備考

・ttylist 形式は未サポート

・文字列指定“1”でも動作します。

■default：無し

cmd_timeout

数値

(文字列)

sendchar 送信時のタイムアウト値を指定します。

■範囲 ：1-30

■備考

 ・文字列指定でも動作します。

■default：10

68

キー名 型 内容

nl

文字列

sendchar の末尾に付与する改行コードを指定

します。

■選択肢 ：cr, lf, crlf

■備考 ：選択肢以外はエラーとなります。

recvchar

配列 sendchar 送信後に待ち受ける文字列を指定し

ます。

■登録数 ：最大 16

■default：無し

recvchar_regex 配列 sendchar 送信後に待ち受ける文字列（正規表

現）を指定します。

■登録数 ：最大 8

■default：無し

sendchar 配列 送信する文字列を指定します。

※文字列及び各オプションについては全て

 ダブルクォーテーションで囲って指定

します。

■登録数 ：最大 1024

■文字長 ：1-128 文字

■文字種 ：英数字 SPACE

 ! % * + , - . / : = @ _ ^ ~

■特殊な送信方法

 ・__NL__ 改行送信

 ・__CTL__:hex 制御文字(1 文字)送信

 ・__HEX__:hexs 制御文字(複数)送信

■送信タイミングオプション

 ・__WAIT__:sec

 ・__NOWAIT__

 ・__NOWAIT__:sec

 ※時間指定オプションの範囲は 1-1800

69

＜リクエストボディのデータフォーマット＞

（２）エラー時の動作

キー名 型 内容

error_detect_on_sendchar 文字列 sendchar 送信後にエラーが発生した場合、以降

の sendcharを送信するか/しないかの設定を指

定します。

■選択肢

・exec

 エラーが発生した場合でも、sendchar を

送信します

・cancel

 エラーが発生した場合、sendchar を送信

 しません

■備考

・エラー例

- TimeOut

- Session limit over

- Error Method

- Connection closed

error_recvchar_regex 配列 sendchar 送信後、指定された文字列（正規表現）

が含まれていたらエラーとなる文字列を指定

します。

■登録数 ：最大 8

■default：無し

＜リクエストボディのデータフォーマット＞

（３）デバッグ

キー名 型 内容

ttycmd_debug 文字列 デバッグ情報をレスポンスデータに含むかど

うかの設定値を指定します。

■選択肢 ：off, on, detail

■default：off

■備考 ：選択肢以外はエラーとなります。

70

4.4.1.3 レスポンス

項目 内容

フォーマット JSON（オブジェクト型）

共通データ 「3.3.2 共通データ」参照

＜レスポンスデータ＞

キー 内容

request

リクエストボディで指定したリクエストデータ

error 発生したエラー数

data

(配列)

リクエストボディで指定したシリアルの送受信シナリオについて

送信データ（execute_command）

・文字列

受信データ（response）

・配列

の組み合わせをオブジェクト形式で配列に格納したデータ

debug

デバッグデータ

※ttycmd_debug が on または detail の時のみ

71

4.4.1.4 エラー

このリソースは共通エラー以外に以下のエラーが発生します。

メッセージ

(ステータスコード)

内容

Error: Invalid json data

(400)

リクエストボディの内容が JSON フォーマットで

ない場合に表示されます。

Error: The required parameter

is missing.($key)

(400)

リクエストボディに必須パラメータが無い場合

に表示されます。

Error: The XXX option must be an

array.

(400)

リクエストボディに配列型で指定するパラメー

タをサポート外の型で指定した場合に表示され

ます。（sendchar, recvchar, recvchar_regex,

error_recvchar_regex）

Error: The cmd_timeout option must

be an integer(range:1-30).

(400)

リクエストボディの cmd_timeout オプションの

設定範囲が誤っている場合に表示されます。

Error: The nl option must be a string

(crlf, cr, lf (default: cr)).

(400)

リクエストボディの nl オプションの設定値が誤

っている場合に表示されます。

Error: XXX :sec option must be an

integer(range:1-1800).

(400)

リクエストボディの sendchar オプションの送信

タイミングの時間設定値（ __WAIT__:sec、

__NOWAIT__:sec）が誤っている場合に表示されま

す。

Error: The configurable lines of

sendchar are 1-1024.

(400)

リクエストボディの sendchar オプションの設定

数が範囲外の場合に表示されます。

Error: The configurable lines of

recvchar are 1-16.

(400)

リクエストボディの recvchar オプションの設定

数が範囲外の場合に表示されます。

Error: The configurable lines of

recvchar_regex are 1-8.

(400)

リクエストボディの recvchar_regex オプション

の設定数が範囲外の場合に表示されます。

72

メッセージ

(ステータスコード)

内容

Error: The configurable lines of

error_recvchar_regex are 1-8.

(400)

リクエストボディの error_recvchar_regex オプ

ションの設定数が範囲外の場合に表示されます。

Error: The error_detect_on_sendchar

option must be a string (cancel,

exec (default: cancel)).

(400)

リクエストボディの error_detect_on_sendchar

オプションの設定値がサポート外の場合に表示

されます。

Error: The ttycmd_debug option must

be a string (off, on, detail

(default: off)).

(400)

リクエストボディの ttycmd_debug オプションの

設定値がサポート外の場合に表示されます。

Error: sendchar contains non-usable

characters.

(400)

リクエストボディの sendchar オプションの設定

値にサポート外の文字種が含まれていた場合に

表示されます。

Error:

※その他エラーメッセージ

(200)

リクエストボディの tty オプションの設定値が

範囲外（NS-2250-16 で、17 を指定）など、指定

されたパラメータが、正しく処理できない場合に

表示されます。

表示された場合、リクエストボディの JSON データの内容を確認してください。

73

4.4.1.5 実行例

リクエストボディの JSON データ

$ cat switch_version.json
{
 "tty": 2,
 "nl": "cr",
 "cmd_timeout": 30,
 "recvchar": [
 "Switch>",
 "Switch#",
 "Press RETURN to get started."
],
 "recvchar_regex": [
 "[Uu]sername:",
 "[Pp]assword:",
 "(^|\\r|\\n|!)[a-zA-Z0-9_().-]*(>|#) "
],
 "sendchar": [
 "__NL__",
 "ssol",
 "ssol",
 "terminal length 0",
 "show version",
 "exit"
]
}

$

※TTY 番号 2 に接続されている Switch 製品にログイン後、

”terminal length 0”、

“show version”

コマンドを実行してログアウトするシナリオ例となります。

※実行例は整形して記載しています

74

※レスポンスデータの一部(data)については内容を省略しています。

 date 部分に、実際のシリアル通信のオペレーションが格納されます。

$ curl -u api:api -X POST -H "Content-Type: application/json"
http://<IP>:<PORT>/api/v1/ttymanage --data @./switch_version.json

{
 "info": {
 "result": 0,
 "message": ""
 },
 "request": {
 "tty": 2,
 "nl": "cr",
 "cmd_timeout": 30,
 "sendchar": [
 "__NL__",
 "ssol",
 "ssol",
 "terminal length 0",
 "show version",
 "exit"
],
 "recvchar": [
 "Switch>",
 "Switch#",
 "Press RETURN to get started."
],
 "recvchar_regex": [
 "[Uu]sername:",
 "[Pp]assword:",
 "(^|\\r|\\n|!)[a-zA-Z0-9_().-]*(>|#) "
],
 "error_recvchar_regex": [],
 "error_detect_on_sendchar": "cancel",
 "ttycmd_debug": "off"
 },
 "data": [
 {
 "execute_command": "__NL__",
 "response": [
 "Username:"
]

 ～～

 省略

 ～～
 "Press RETURN to get started.",
 ""
]
 }
],
 "error": 0
}
$

75

4.5 LOG/HISTORY

4.5.1 /log/history/command (GET)

4.5.1.1 概要

SmartCS のコマンドログ情報を取得します。

4.5.1.2 リクエスト

項目 内容

アクセス可能なユーザ権限 root

オプションパラメータ GET クエリ

＜GET クエリによるパラメータの指定＞

パラメータ 内容

lines 表示するコマンドログの行数を指定します。

■指定範囲

・1-1000：指定した行数表示します。

 例：10 と指定した場合、最新の 10 行を

 表示します。

・all ：最新のログを最大 8192 行表示します。

・未指定：パラメータが未指定の場合、最新の 50 行

 を表示します。

76

4.5.1.3 レスポンス

項目 内容

フォーマット JSON（オブジェクト型）

共通データ 「3.3.2 共通データ」参照

＜レスポンスデータ＞

キー 内容

log

(配列)

SmartCS のコマンドログデータを表示

4.5.1.4 エラー

このリソースは共通エラー以外に以下のエラーが発生します。

メッセージ

(ステータスコード)

内容と対処

Error: Invalid value(lines).

(200)

GETクエリで指定した表示行数に未サポートの文字列

や値が指定される場合に表示されます。

GET クエリで指定した内容を確認してください。

77

4.5.1.5 実行例

※オプションなし

※実行例は整形して記載しています

※最新の 100 行を表示

※全てのログ（最大 8192行）を表示

$ curl -u api:api -X GET http://<IP>:<PORT>/api/v1/log/history/command

{
 "info": {
 "result": 0,
 "message": ""
 },
 "log": [
 "2026 Jan 7 18:22:01 somebody/console: show ver",

 （省略）
 "2026 Jan 8 18:29:17 api/webapi: show log command 50"

]

}

$

$ curl -u api:api -X GET
http://<IP>:<PORT>/api/v1/log/history/command?lines=100

{
 "info": {
 "result": 0,
 "message": ""
 },
 "log": [

 （省略）

]

}

$

$ curl -u api:api -X GET
http://<IP>:<PORT>/api/v1/log/history/command?lines=all

{
 "info": {
 "result": 0,
 "message": ""
 },
 "log": [

 （省略）

]

}

$

78

4.5.2 /log/history/console (GET)

4.5.2.1 概要

SmartCS のコンソールログ情報を取得します。

4.5.2.2 リクエスト

項目 内容

アクセス可能なユーザ権限 root

オプションパラメータ GET クエリ

＜GET クエリによるパラメータの指定＞

パラメータ 内容

lines 表示するコマンドログの行数を指定します。

■指定範囲

・1-1000：指定した行数表示します。

 例：10 と指定した場合、最新の 10 行を

 表示します。

・all ：最新のログを最大 8192 行表示します。

・未指定：パラメータが未指定の場合、最新の 50 行

 を表示します。

79

4.5.2.3 レスポンス

項目 内容

フォーマット JSON（オブジェクト型）

共通データ 「3.3.2 共通データ」参照

＜レスポンスデータ＞

キー 内容

log

(配列)

SmartCS のコンソールログデータを表示

4.5.2.4 エラー

このリソースは共通エラー以外に以下のエラーが発生します。

メッセージ

(ステータスコード)

内容と対処

Error: Invalid value(lines).

(200)

GETクエリで指定した表示行数に未サポートの文字列

や値が指定される場合に表示されます。

GET クエリで指定した内容を確認してください。

80

4.5.2.5 実行例

※オプションなし

※実行例は整形して記載しています

※最新の 100 件を表示

※全てのログ（最大 8192行）を表示

$ curl -u api:api -X GET http://<IP>:<PORT>/api/v1/log/history/console

{
 "info": {
 "result": 0,
 "message": ""
 },
 "log": [
 "2022 May 27 00:05:18 login: login success: somebody/console",

 （省略）
 "2022 May 27 00:15:18 login: logout: somebody/console"

]

}

$

$ curl -u api:api -X GET
http://<IP>:<PORT>/api/v1/log/history/console?lines=100

{
 "info": {
 "result": 0,
 "message": ""
 },
 "log": [

 （省略）

]

}

$

$ curl -u api:api -X GET
http://<IP>:<PORT>/api/v1/log/history/console?lines=all

{
 "info": {
 "result": 0,
 "message": ""
 },
 "log": [

 （省略）

]

}

$

81

4.5.3 /log/history/ttysend/tty/{ttyno} (GET)

4.5.3.1 概要

TTY マネージ機能の各コマンドが TTY に送出したデータログを取得します。

4.5.3.2 リクエスト

項目 内容

アクセス可能なユーザ権限 root

オプションパラメータ GET クエリ

＜GET クエリによるパラメータの指定＞

パラメータ 内容

{ttyno}

TTY 番号を一つ指定します。

■指定範囲：1-48

lines 表示するコマンドログの行数を指定します。

■指定範囲

・1-1000：指定した行数表示します。

 例：10 と指定した場合、最新の 10 行を

 表示します。

・all ：最新のログを最大 8192 行表示します。

・未指定：パラメータが未指定の場合、最新の 50 行

 を表示します。

82

4.5.3.3 レスポンス

項目 内容

フォーマット JSON（オブジェクト型）

共通データ 「3.3.2 共通データ」参照

＜レスポンスデータ＞

キー 内容

log

(配列)

TTY マネージ機能の各コマンドが TTY に送出したデータログを

表示

4.5.3.4 エラー

このリソースは共通エラー以外に以下のエラーが発生します。

メッセージ

(ステータスコード)

内容と対処

Error: Invalid value(ttyno).

(400)

GETクエリで指定した TTY番号に未サポートの文字列

や値が指定される場合に表示されます。

GET クエリで指定した内容を確認してください。

Error: Invalid value(lines).

(200)

GETクエリで指定した表示行数に未サポートの文字列

や値が指定される場合に表示されます。

GET クエリで指定した内容を確認してください。

Error:

※その他エラーメッセージ

(200)

GET クエリで指定した TTY 番号の値が範囲外（NS-

2250-16 で、17 を指定）など、指定されたパラメータ

が、正しく処理できない場合に表示されます。

83

4.5.3.5 実行例

※オプションなし

※実行例は整形して記載しています

※最新の 25行を表示

※全てのログ（最大 8192行）を表示

$ curl -u api:api -X GET http://<IP>:<PORT>/api/v1/log/history/ttysend/tty/4

{
 "info": {
 "result": 0,
 "message": ""
 },
 "log": [
 "2022 May 12 19:01:01 restapi: enable<CR>",

 （省略）
 "2022 May 12 19:02:19 restapi: show running-config<CR>

]

}

$

$ curl -u api:api -X GET
http://<IP>:<PORT>/api/v1/log/history/ttysend/tty/4?lines=25

{
 "info": {
 "result": 0,
 "message": ""
 },
 "log": [

 （省略）

]

}

$

$ curl -u api:api -X GET
http://<IP>:<PORT>/api/v1/log/history/ttysend/tty/4?lines=all

{
 "info": {
 "result": 0,
 "message": ""
 },
 "log": [

 （省略）

]

}

$

84

4.5.4 /log/history/webapi (GET)

4.5.4.1 概要

SmartCS の webapi ログ情報を取得します。

4.5.4.2 リクエスト

項目 内容

アクセス可能なユーザ権限 root

オプションパラメータ GET クエリ

＜GET クエリによるパラメータの指定＞

パラメータ 内容

lines 表示する REST API のログの行数を指定します。

■指定範囲

・1-1000：指定した行数表示します。

 例：10 と指定した場合、最新の 10 行を

 表示します。

・all ：最新のログを最大 8192 行表示します。

・未指定：パラメータが未指定の場合、最新の 50 行

 を表示します。

85

4.5.4.3 レスポンス

項目 内容

フォーマット JSON（オブジェクト型）

共通データ 「3.3.2 共通データ」参照

＜レスポンスデータ＞

キー 内容

log

(配列)

SmartCS の webapi のログデータを表示

4.5.4.4 エラー

このリソースは共通エラー以外に以下のエラーが発生します。

メッセージ

(ステータスコード)

内容と対処

Error: Invalid value(lines).

(200)

GETクエリで指定した表示件数に未サポートの文字列

や値が指定される場合に表示されます。

GET クエリで指定した内容を確認してください。

86

4.5.4.5 実行例

※オプションなし

※実行例は整形して記載しています

※最新の 100 行を表示

※全てのログ（最大 8192行）を表示

$ curl -u api:api -X GET http://<IP>:<PORT>/api/v1/log/history/webapi

{
 "info": {
 "result": 0,
 "message": ""
 },
 "log": [

 （省略）
 "2022 May 27 11:47:15 [10080] login success: api/172.31.8.41:41188",
 "2022 May 27 11:47:16 [10080] logout: api/172.31.8.41:41188"

]

}

$

$ curl -u api:api -X GET
http://<IP>:<PORT>/api/v1/log/history/webapi?lines=100

{
 "info": {
 "result": 0,
 "message": ""
 },
 "log": [

 （省略）

]

}

$

$ curl -u api:api -X GET
http://<IP>:<PORT>/api/v1/log/history/webapi?lines=all

{
 "info": {
 "result": 0,
 "message": ""
 },
 "log": [

 （省略）

]

}

$

87

4.6 LOG/SERIAL

4.6.1 /log/serial/tty/{ttyno} (GET)

4.6.1.1 概要

SmartCS の TTY ログ情報を取得します。

4.6.1.2 リクエスト

項目 内容

アクセス可能なユーザ権限 ttymanage

オプションパラメータ GET クエリ

＜GET クエリによるパラメータの指定＞

パラメータ 内容

{ttyno}

TTY 番号を一つ指定します。

■指定範囲：1-48

lines 表示するコマンドログの行数を指定します。

■指定範囲

・1-1000：指定した行数表示します。

 例：10 と指定した場合、最新の 10 行を

 表示します。

・all ：最新のログを最大 8192 行表示します。

・未指定：パラメータが未指定の場合、最新の 50 行

 を表示します。

88

4.6.1.3 レスポンス

項目 内容

フォーマット JSON（オブジェクト型）

共通データ 「3.3.2 共通データ」参照

＜レスポンスデータ＞

キー 内容

log

(配列)

SmartCS が保存している指定した TTY 番号のログ情報を表示

4.6.1.4 エラー

このリソースは共通エラー以外に以下のエラーが発生します。

メッセージ

(ステータスコード)

内容と対処

Error: Invalid value(ttyno).

(400)

GETクエリで指定した TTY番号に未サポートの文字列

や値が指定される場合に表示されます。

GET クエリで指定した内容を確認してください。

Error: Invalid value(lines).

(200)

GETクエリで指定した表示件数に未サポートの文字列

や値が指定される場合に表示されます。

GET クエリで指定した内容を確認してください。

Error:

※その他エラーメッセージ

(200)

GET クエリで指定した TTY 番号の値が範囲外（NS-

2250-16 で、17 を指定）など、指定されたパラメータ

が、正しく処理できない場合に表示されます。

89

4.6.1.5 実行例

※オプションなし

※実行例は整形して記載しています

※最新の 100 行を表示

※最大 8192行分のログファイルを表示

$ curl -u api:api -X GET http://<IP>:<PORT>/api/v1/log/serial/tty/2

{
 "info": {
 "result": 0,
 "message": ""
 },
 "log": [

 （省略）

]

}

$

$ curl -u api:api -X GET http://<IP>:<PORT>/api/v1/log/serial/tty/2?lines=100

{
 "info": {
 "result": 0,
 "message": ""
 },
 "log": [

 （省略）

]

}

$

$ curl -u api:api -X GET http://<IP>:<PORT>/api/v1/log/serial/tty/2?lines=all

{
 "info": {
 "result": 0,
 "message": ""
 },
 "log": [

 （省略）

]

}

$

90

4.6.2 /log/serial/files/tty/{ttyno} (GET)

4.6.2.1 概要

SmartCS の TTY ログデータを取得（ダウンロード）します。

4.6.2.2 リクエスト

項目 内容

アクセス可能なユーザ権限 ttymanage

オプションパラメータ GET クエリ

＜GET クエリによるパラメータの指定＞

パラメータ 内容

{ttyno}

TTY 番号を一つ指定します。

■指定範囲：1-48

lines 表示するコマンドログの行数を指定します。

■指定範囲

・1-1000：指定した行数表示します。

 例：10 と指定した場合、最新の 10 行を

 表示します。

・all ：本装置に記録されているログを全て表示

します。

・未指定：パラメータが未指定の場合、最新の 50 行

 を表示します。

91

4.6.2.3 レスポンス

項目 内容

フォーマット テキストデータ (text/plain)

＜レスポンスデータ＞

内容

SmartCS が保存している指定した TTY 番号のログ情報をテキストデータでダウンロードします。

■ファイル名仕様（Content-Disposition の attachment:filename）

・ラベル名_ホスト名_ttyNN_yymmddhhmm.log

- NN は TTY 番号 (TTY 番号が一桁の場合、0 が付与されます。TTY2 の場合、_tty02_)

- ラベル名に SPACE を使っている場合、SPACE は_(アンダーバー)に変換されます。

- ラベル名が設定されていない場合は「ホスト名_ttyNN_yymmddhhmm.log」となります。

4.6.2.4 エラー

このリソースは共通エラー以外に以下のエラーが発生します。

メッセージ

(ステータスコード)

内容と対処

Error: Invalid value(ttyno).

(400)

GETクエリで指定した TTY番号に未サポートの文字列

や値が指定される場合に表示されます。

GET クエリで指定した内容を確認してください。

Error: Invalid value(lines).

(200)

GETクエリで指定した表示件数に未サポートの文字列

や値が指定される場合に表示されます。

GET クエリで指定した内容を確認してください。

Error:

※その他エラーメッセージ

(200)

GET クエリで指定した TTY 番号の値が範囲外（NS-

2250-16 で、17 を指定）など、指定されたパラメータ

が、正しく処理できない場合に表示されます。

92

4.6.2.5 実行例

※オプションなし

※実行例は整形して記載しています

※最新の 100 行分のログファイルをダウンロード

$ curl -u api:api –LOJ -X GET http://<IP>:<PORT>/api/v1/log/serial/files/tty/2
$ ls
SWITCH-1_NS-2250_tty02_2205271913.log

$

$ curl -u api:api –LOJ -X GET
http://<IP>:<PORT>/api/v1/log/serial/files/tty/2?lines=100

$ ls
SWITCH-1_NS-2250_tty02_2205271913.log

$

93

4.6.3 /log/serial/search/tty/{ttyno} (GET)

4.6.3.1 概要

SmartCS の TTY ログ情報を検索します。

4.6.3.2 リクエスト

項目 内容

アクセス可能なユーザ権限 ttymanage

オプションパラメータ GET クエリ

＜GET クエリによるパラメータの指定＞

パラメータ 内容

{ttyno}

(必須)

TTY 番号を一つ指定します。

■指定範囲：1-48

string

(必須)

検索文字列を指定します。

■文字長 ：1-32

■文字種 ：英数字

SPACE ! # % + , - . / : = @ _

■備考 ：スペースを含んだ文字列を検索する場合、

スペースは %20 と指定します。

lines 検索文字列で対象となった行の出力行数を指定します。

■指定範囲：0-64

・0 を指定した場合、検索文字列を含む行のみが

検索結果として出力されます。

・1 を指定した場合、検索文字列＋前後 1 行の計 3 行

が検索結果として出力されます。

64 を指定した場合は、129 行となります。

■備考 ：lines 指定がない場合、検索文字列は

 出力されません。

94

4.6.3.3 レスポンス

項目 内容

フォーマット JSON（オブジェクト型）

共通データ 「3.3.2 共通データ」参照

＜レスポンスデータ＞

キー 内容

tty

ログ情報を検索する TTY 番号

label ログ情報を検索する TTY 番号に設定されているラベル名

string

検索文字列

count

ログ情報に含まれていた検索文字列数

data

(配列)

ログ情報に含まれていた検索文字列を含むログデータを格納します。

検索結果の表示は 512 件までとなります。512 件を超える場合はエラー

となります。

95

4.6.3.4 エラー

このリソースは共通エラー以外に以下のエラーが発生します。

メッセージ

(ステータスコード)

内容と対処

Error: Invalid value(ttyno).

(400)

GETクエリで指定した TTY番号に未サポートの文

字列や値が指定される場合に表示されます。

Error: The required parameter is

missing.(string)

(400)

GET クエリの必須パラメータである検索文字列

が指定されていません。

Error: The configuable length of

search string is 1-32.

(400)

GET クエリの検索文字列の文字長が範囲外とな

っています。

Error: string contains non-usable

characters.

(400)

GET クエリの検索文字列に未サポートの文字種

が含まれています。

Error: Invalid value(lines: 0-64).

(400)

GET クエリで指定した検索文字列数が範囲外の

値となります。

Error:

※その他エラーメッセージ

(200)

GETクエリで指定した TTY番号の値が範囲外（NS-

2250-16 で、17 を指定）など、指定されたパラメ

ータが、正しく処理できない場合に表示されま

す。

表示された場合、GET クエリで指定した内容を確認してください。

96

4.6.3.5 実行例

※“verison”を含む文字列を検索した場合

※実行例は整形して記載しています

※“verison”を含む文字列の前後 1行を検索した場合

$ curl -u api:api -X GET
"http://<IP>:<PORT>/api/v1/log/serial/search/tty/2?string=version"

{
 "info": {
 "result": 0,
 "message": ""
 },
 "tty": "2",
 "label": "SWITCH",
 "string": "version",
 "count": "4",
 "data": []
}

$

$ curl -u api:api -X GET
"http://<IP>:<PORT>/api/v1/log/serial/search/tty/2?string=version&lines=1"

{
 "info": {
 "result": 0,
 "message": ""
 },
 "tty": "2",
 "label": "SWITCH",
 "string": "version",
 "count": "4",
 "data": [
 [
 "SWITCH#",
 "SWITCH#show version",
 "XXX Software Build-Date (4/16) "
],
 [
 "!",
 "version 1.0",
 "xxxxxxxxxxxxxxxxx"
],
 [

 （省略）
]
]
}

$

97

5 章 /ttymanage の解説

5.1 使用上の注意

/ttymanage の API リソースを指定して TTY マネージ機能を使う上での注意を記載し

ます。TTY マネージ機能を使う事で、SmartCS のシリアルポートに接続されている機器の

コンソールに対して指定された文字列の送受信を行い、様々なオペレーションを実行する

事が可能となります。

ただし、以下の点には注意してご利用下さい。

(1) コンソールの初期状態

SmartCS に接続されている機器のコンソール状態について、TTY マネージ機能

は管理、制御を行いません。最後に実行したコマンドによって、SmartCS に接続さ

れている機器のコンソールは

・ログインプロンプト状態

・一般ユーザシェル状態

・管理者ユーザシェル状態

・設定投入用シェル状態

と様々な状態になっている可能性があります。SmartCS に接続されている機器の

コンソール状態を考慮してリクエストボディの JSON データを作成してください。

例： 必ず最後にログインプロンプト状態に戻す等

98

(2) コンソール接続の排他制御

SmartCS のシリアルポートに接続されている機器に対してオペレーションする方

法は２種類あります。

① telnet/ssh コマンドでポートサーバにポートユーザでアクセス後

 直接通信を行う方法

②TTY マネージ機能を使い、/ttymanage の API リソースに対して

リクエストボディとして JSON で定義するシリアル送受信シナリオを送信して、

通信を行う方法

 この 2 種類のオペレーション方法がある為万が一両方のオペレーションを同時に実

行してしまい、意図しないコマンドを送信してしまう、など事故を防ぐため、排他制御

が可能となっています。

シリアルポートのオペレーションの排他機能を有効にする場合

※デフォルトは排他制御が有効になっています

シリアルポートのオペレーションの排他機能を無効にする場合

※シリアル送受信のシナリオを作成する際の検証時などにご利用ください

(0)NS-2250# set portd service exclusive on

(0)NS-2250#

(0)NS-2250# set portd service exclusive off

(0)NS-2250#

99

5.2 制限事項

REST API 機能全般に当てはまる内容となりますが、特に/ttymanage の API リソース

を利用した TTY マネージ機能はクライアントからリクエストを受けて、シリアル通信を行った

後にレスポンスを返すという機能の都合上、クライアントアプリケーションのタイムアウト時間

にケアが必要となります。

※（２）（３）は１リクエストの処理内で複数行うケースが多いと思われます。

シリアル通信のオペレーションシナリオによって、REST API のクライアント側で設定する

タイムアウト値は長めに設定してください。また、クライアントアプリケーションのタイムアウト

時間が変更できない場合や、タイムアウト時間の設定値が短い場合（シリアル通信のオペレ

ーションシナリオを終えられない時）は、リクエストを複数に分けて行うなどしてください。

100

5.3 各オプションの動作

各オプションの動作についてそれぞれ解説します。

5.3.1 sendchar と recvchar の動作

sendchar は、指定された文字列を上から順番に送信します。recvchar は、文字列を送

信後、一致する文字列が入出力内容に含まれるかどうかを待ちます。一致する文字列を受

信した場合、次の文字列を送信します。

※下記の図は、recvchar オプションを指定した場合の例となります。

101

5.3.2 recvchar を設定しない場合の動作

recvchar (recvchar_regex) を指定しなかった場合、sendchar は cmd_timeout 時間

の経過を待って次の文字列を送信します。

※/ttymanage のリクエストボディとして渡す JSON オプションの必須オプションは、

tty と sendchar オプションのみとなります。

※下記の図は、recvchar オプションを指定しない場合の例となります。

102

5.3.3 sendchar の特殊な設定

sendchar は指定した文字列を送信する以外にもオプションを指定する事で特殊な送信

方法を設定する事ができます。

1. 改行文字列だけを送信する。

__NL__オプション

改行文字だけを送信する場合、送信文字列として”__NL__”を設定します。

送信される改行コードは、nl オプションで設定した値となります。

コンソール経由でログイン処理のオペレーションを行う時などのパスワード入

力時に、空パスワードを設定する場合などに使う事ができます。

＜__NL__オプションの使用例＞

103

2. 送信文字列毎に、タイムアウト時間を設定する。

__WAIT__：sec オプション

sendchar で指定した文字列は、cmd_timeout オプションで設定された時間

（デフォルト 10 秒）、recvchar で設定された文字列を待ちます。

文字列の送信によって SmartCS に接続されている機器のコンソールで実行

されるコマンドが、結果を出力するまでに時間が掛かる場合（ランニングコンフィ

グの取得コマンドやサポート情報の取得コマンドの実行）、特定の送信文字列の

みタイムアウト時間を変更する事ができます。

以下の例の場合、recvchar のタイムアウト値はデフォルトの 10 秒ですが、

「show config running」文字列の送信時のみ、タイムアウト時間を 30 秒に設定

し動作します。

＜__WAIT__:sec オプションの使用例＞

104

3. 送信文字列毎に、recvchar を待たない設定をする。

__NOWAIT__ オプション

cmd_timeout オプションで設定された時間を待たずにすぐ次の文字列を送

信するオプションとなります。

※約１秒後に送信します。

コンソール接続先に対して、recvchar を待たずに連続して文字列を送信した

い場合などに使う事ができます。

＜__NOWAIT__オプションの使用例＞

105

4. 送信文字列毎に、recvchar を待たずに時間だけで待つように設定する。

__NOWAIT__：sec オプション

recvchar の設定がある場合、文字列送信後の入出力結果に recvchar が含

まれているかの確認を行い、含まれている場合に次の文字列の送信を行います。

ただし、SmartCS に接続されている機器のコンソールに対して行いたいオペレ

ーションによっては、これらの基本動作によって意図通りに動作させる事ができ

ない場合があります。

（例）

・ recvchar に ”#”、”>” といった文字列を設定し 本来であれば SmartCS

に接続されている機器のプロンプトを待ちたいが、実行したコマンドの出力

に “>” が含まれており、次の文字列が送信されてしまう場合。

・ リブート や バージョンアップコマンドを実行した際、コンソールに様々な

文字や記号が出力されてしまう為、意図せず recvchar にマッチしてしまい、

リブート中などに次の文字列が送信されてしまう場合。

上記のようなシチュエーションでも出来る限り意図通りコンソールオペレーション

が行えるように、送信文字列毎に recvchar を待たない設定をする事ができます。

＜__NOWAIT__:sec オプションの使用例＞

106

5. 制御文字を送信する

__CTL__ オプション

制御文字を送信する場合、sendchar に「__CTL__:hex」を指定します。送信

可能な制御文字は以下の範囲となります。

00 : [Ctrl-@]

01 : [Ctrl-A]

02 : [Ctrl-B]

03 : [Ctrl-C]

04 : [Ctrl-D]

05 : [Ctrl-E]

06 : [Ctrl-F]

07: [Ctrl-G]

08 : [Ctrl-H]

09 : [Ctrl-I]

0a : [Ctrl-J]

0b : [Ctrl-K]

0c : [Ctrl-L]

0d : [Ctrl-M]

0e : [Ctrl-N]

0f : [Ctrl-O]

10 : [Ctrl-P]

11 : [Ctrl-Q]

12 : [Ctrl-R]

13 : [Ctrl-S]

14 : [Ctrl-T]

15 : [Ctrl-U]

16 : [Ctrl-V]

17 : [Ctrl-W]

18 : [Ctrl-X]

19 : [Ctrl-Y]

1a : [Ctrl-Z]

1b : [Ctrl-[] / ESC

1c : [Ctrl-\]

1d : [Ctrl-]]

1e : [Ctrl-^]

1f : [Ctrl-_]

7f : [Delete] / Ctrl-?

※一番左の値が__CTL__:hex の hex 部分となります。

コンソール経由で制御文字を送信する場合に使うことができます。

例：ping の実行を停止する。特定の NW 機器のコマンド実行後に送信する。等

＜__CTL__:hex オプションの使用例＞

107

6. 制御文字を複数まとめて送信する

__HEX__ オプション

制御文字を複数まとめて送信する場合、sendchar に「__HEX__:hex」を指定

します。送信可能な制御文字 00 ～ 7F の範囲となります。__HEX__オプショ

ンは、recvchar で指定した受信文字列を待ちません。

コンソール経由で制御文字をまとめて送信するシチュエーションとしては以下

のような内容を想定しています。

端末エミュレータ上で、Linux の nmtui コマンドなどを利用する場合に、

Curses の操作（↑↓のカーソル移動など）を行う場合

sendchar で送信する文字列がサポート外の場合に、直接文字コードを

指定して送信する場合

＜__HEX__:hex オプションの使用例＞

108

5.3.4 error_detect_on_sendchar の動作

 sendchar で指定した文字列を送信する場合、以下の理由で文字列の送信がエラーとな

る場合があります。

＜文字列の送信がエラーとなる要因＞

エラー要因 要因

recvchar をタイムアウト時間までに受信出来なかった Error:: Timeout.

対象の tty に接続できない 接続許可設定がない為、

接続できない。

Error:: Not allowed.

排他制御により接続でき

ない。

Error:: Session limit over.

tty 管理用デーモンに接

続ができない

Error:: Connection closed.

error_recvchar_regex

で設定した文字列を検出

した。

Error:: Matched “xxx”.

error_detect_on_sendchar 設定が”cancel”の時に、次

の送信文字列を送信しない

Error:: After error.

これらのエラーが発生した場合に次の文字列を送信してしまうと、本来想定していたオペレ

ーションと異なる動作となってしまう恐れがあります、その為

・エラー発生後も文字列をそのまま送信するか

・エラー発生後には文字列を送信しないか

についての動作を設定するオプションとして、error_detect_on_sendchar を用意していま

す。

109

1. error_detect_on_sendchar：cancel 設定時の動作

※デフォルト値は、error_detect_on_sendchar：cancel です。

2. error_detect_on_sendchar：exec 設定時の動作

110

5.4 sendchar の送信オプション一覧

sendchar で送信できる方法の組み合わせは以下の通りとなります。

設定方法 備考

show version 文字列を送信

show version __WAIT__：sec 文 字 列 を 送 信 後 、 設 定 し た 時 間

recvchar を待つ

show version __NOWAIT__ 文字列を送信後、ただちに次の文字

列を送信する。

show version __NOWAIT__：sec 文字列を送信後、設定した時間だけ

で待つ。

__NL__ 改行を送信

__NL__ __WAIT__：sec 改 行 を 送 信 後 、 設 定 し た 時 間

recvchar を待つ

__NL__ __NOWAIT__ 改行を送信後、ただちに次の文字列

を送信する。

__NL__ __NOWAIT__：sec 改行を送信後、設定した時間だけで

待つ。

__CTL__:03 制御文字を送信する。

__CTL__:03 __WAIT__:sec 制御文字を送信後、設定した時間

recvchar を待つ。

__CTL__:03 __NOWAIT__:sec 制御文字を送信後、設定した時間待

って次の文字列を送信する。

__CTL__:03 __NOWAIT__ 制御文字を送信後、ただちに次の文

字列を送信する。

111

設定方法 備考

__HEX__: 54 65 73 74 16 進数で制御文字や制御コード、

ASCII の文字列など様々なデータを送

信します。

__HEX__: 54 65 73 74 __WAIT__：sec 16 進数で指定したデータを送信後、設

定した時間 recvchar を待つ

__HEX__: 54 65 73 74 __NOWAIT__ 16 進数で指定したデータを送信後、た

だちに次の文字列を送信する。

__HEX__: 54 65 73 74 __NOWAIT__：sec 16 進数で指定したデータを送信後、設

定した時間だけで待つ。

※”show version”部分は何らかの送信文字列を指定した場合の例となります。

※”__CTL__”で指定している 03 は、ctrl+C を指定した場合の例となります。

※”__HEX__”で指定している（54 65 73 74）は、ASCII の”Test”を指定した

場合の例となります。

※”__HEX__”指定時は、recvchar で指定している文字列を待ちません。

112

5.5 正規表現を設定する

/ttymanage の API リソースを指定して、JSON 形式データでシリアルオペレーション

の送受信シナリオを作成する場合、以下のオプション内において正規表現で設定を記

載する事が可能です。

・recvchar_regex

・error_recvchar_regex

これらのオプションで設定できる正規表現について以下に記載します。

(1) 単一文字とマッチする表現

. 任意の１文字にマッチします。

[…] （…は任意の文字）指定された任意の１文字にマッチします。

[^…] （…は任意の文字）指定されていない任意の 1 文字にマッチしま

す。

\k （k が非英数字文字）文字としてマッチします。

\d 0 から 9 の数字 1 文字にマッチします。

\D \d 以外の 1 文字にマッチします。

\s いずれかの空白文字にマッチします。

\S \s 以外の 1 文字にマッチします。

\w 英数字と”_”（アンダーバー）の 1 文字にマッチします。

\W \w 以外の 1 文字にマッチします。

\r CR（0x0d）にマッチします。

\n LF（0x0a）にマッチします。

(2) 付加することで反復したマッチを表す表現

* 0 回以上の反復マッチとなります。

+ 1 回以上の反復マッチとなります。

? 0 回か 1 回のマッチとなります。

{m} （m は 0 以上の整数）ちょうど m 回の反復マッチとなります。

{m,} （m は 0 以上の整数）m 回以上の反復マッチとなります。

{m,n} （m,n はそれぞれ 0 以上の整数）m 回から n 回までの反復マッチ

となります。

113

(3) その他の表現

(re) （re はあらゆる正規表現）re にマッチします。

| この記号によって隔てられているいずれかの表現とマッチします。

[0-9] 0 から 9 の数字 1 文字にマッチします。

[a-z] a から z の英字 1 文字にマッチします。

[A-Z] A から Z の英字１文字にマッチします。

(4) 組合せの表現

(^|\n|\r) 行の先頭とマッチします。

(5) 正規表現の記述例

英字(大文字/小文字)、数字、記号(_(アンダーバー)、.(ドット)、-(ハイフン))から成る、

複数種類のプロンプトを待ち受けたい場合。

＜マッチする文字列＞

例 ： SmartCS_01> 、 SmartCS_01(config)# 、 SmartCS_01(config-if)# 、

SmartCS_01(config-line)#

recvchar_regex :

- “(^|\\n|\\r)[a-zA-Z0-9_.-]*(\\(config)*(-if|-line)*\\)*(>|#)”

114

6 章 付録 A. ユーザ権限毎のアクセス可能な API リソース

 拡張ユーザに付与する権限毎のアクセス可能な API リソースの一覧について、以下に記

載します。

〇：アクセス可能

×：アクセス不可

API リソース メソッド 拡張ユーザに付与する権限

normal root ttymanage showall

/system/version GET 〇 〇 × 〇

/users GET 〇 〇 × 〇

POST × 〇 × ×

/users/{username} GET 〇 〇 × 〇

PUT × 〇 × ×

DELETE × 〇 × ×

/users/login GET 〇 〇 × 〇

/serial/tty GET 〇 〇 × 〇

/serial/tty/{ttylist} GET 〇 〇 × 〇

PUT × 〇 × ×

/serial/hangup/tty/{ttylist} POST × 〇 × ×

/ttymanage POST × × 〇 ×

/log/history/command GET × 〇 × 〇

/log/history/console GET × 〇 × 〇

/log/history/ttysend/tty/{ttyno} GET × 〇 × 〇

/log/history/webapi GET × 〇 × 〇

/log/serial/tty/{ttyno} GET × × 〇 ×

/log/serial/files/tty/{ttyno} GET × × 〇 ×

/log/serial/search/tty/{ttyno} GET × × 〇 ×

〒261-8507 千葉県千葉市美浜区中瀬 1-8

support@seiko-sol.co.jp

