

Second Edition

Sep 17, 2021

U00144675003

SmartCS modules for Ansible

Operation Guide

U00144675002 Jun 2021
U00144675003 Sep 2021

©Seiko Solutions Inc. 2019

Unauthorized reproduction is prohibited.

The contents of this document may be changed without notice.

"SEIKO" is a registered trademark of Seiko Holdings Corporation.

"Red Hat" and "Ansible" are registered trademarks or trademarks of Red Hat, Inc. and its

subsidiaries in the U.S. and other countries.

"Python" is a registered trademark or trademark of the Python Software Foundation.

Seiko Solutions does not bear any liability for damage occurring due to the use of this

document and the software described within or for the expenses required to recover from

such damage.

Table of Contents

1 Introduction ... 1

1.1 “SmartCS modules for Ansible” Overview .. 1

1.2 Functional overview ... 2
1.2.1 Console Access Function Overview ... 3
1.2.2 CLI Command Function Overview ... 4

1.3 Operating environment ... 5
1.3.1 Control node / Managed node .. 5
1.3.2 Operating requirements .. 6
1.3.3 Ansible environment ... 8

1.4 License ... 9

1.5 How to get “SmartCS modules for Ansible” ... 10

2 Installation ... 13

2.1 Pre-installation Check .. 13

2.2 Installation .. 14

2.3 Upgrading ... 20

2.4 Deleting the installed collection files .. 21

2.5 About dependent packages ... 22

2.6 Other .. 23

3 Preparations .. 24

3.1 Preparing the SmartCS .. 24

3.2 Preparation for control node ... 25

4 Creating a Playbook Compatible with Ansible Collections 26

4.1 Module specification ... 26

4.2 Connection plugin (network_cli) specification .. 29

5 Console Access Function .. 30

5.1 Preparing the SmartCS .. 30

5.2 Preparation for creating a Playbook ... 32

5.3 Playbook Example ... 33

6 Linking with Network Device Vendor Modules .. 34

6.1 Overview .. 34

6.2 Preparation for SmartCS .. 35

6.3 Preparation for creating a Playbook ... 38

6.4 Playbook example .. 42

6.5 Instructions and Directions for Use .. 45

7 CLI Command Function .. 46

7.1 Preparing the SmartCS .. 46

7.2 Preparations for creating Playbook .. 47

7.3 Module and privileged user .. 48

7.4 Playbook Example ... 49

8 Modules .. 50

8.1 seiko.smartcs.smartcs_tty_command .. 50
8.1.1 Overview ... 50
8.1.2 Options ... 51
8.1.3 Playbook Example .. 60
8.1.4 Return Values ... 61
8.1.5 Explanations ... 63
8.1.6 Instructions and Directions for Use .. 86

8.2 seiko.smartcs.smartcs_command .. 88
8.2.1 Overview ... 88
8.2.2 Options ... 89
8.2.3 Playbook Example .. 90
8.2.4 Return Values ... 92

8.3 seiko.smartcs.smartcs_config .. 93
8.3.1 Overview ... 93
8.3.2 Options ... 94
8.3.3 Playbook Example .. 96
8.3.4 Return Values ... 98

8.4 seiko.smartcs.smartcs_facts .. 99

8.4.1 Overview ... 99
8.4.2 Options ... 99
8.4.3 Playbook Example .. 100
8.4.4 Return Values ... 101

9 Limitations ... 104

9.1 Administering the SmartCS series console with “smartcs_tty_command” 104

9.2 Gathering device information with gather_facts ... 105

10 Troubleshooting .. 107

10.1 “Unable to connect to port 22 on x.x.x.x” ... 107

10.2 “timed out” .. 107

10.3 “Error reading SSH protocol banner” ... 108

10.4 “The authenticity of host ‘x.x.x.x’ can’t be established.” ... 108

10.5 ”Authentication failed.” ... 108

10.6 “Bad authentication type” ... 109

10.7 “Unable to automatically determine host network os.” ... 109

10.8 “unable to elevate privilege to enable mode” ... 109

10.9 “command timeout triggered, timeout value is X secs.” ... 110

10.10 “timeout value X seconds reached while trying to send～” 110

10.11 "Ignoring timeout(10) for smartcs_facts" .. 112

11 Appendix A. Building the Ansible Environment 113

11.1 Building the Ansible environment with venv ... 113

11.2 Preparation for ansible.cfg ... 116

12 Appendix B. v1.0 to v1.2 Operation ... 117

12.1 Overview of the v1.0 to v1.2 operation .. 117

12.2 Pre-installation Check .. 117

12.3 Installation .. 118

12.4 Upgrading ... 120

12.5 Uninstalling ... 120

12.6 Command Reference (install_smartcs_modules) .. 122

13 Appendix C. Handling of Various Characters in Playbooks 124

13.1 Specifiable Character Types .. 124

13.2 Sending Various Types of Characters .. 129

13.3 Configuring Regular Expressions... 132

13.4 Execution Result Output Characters .. 134

14 Appendix D. Tips for using the “SmartCS modules for Ansible” 135

14.1 How to Write the File Specifying the src Option ... 135

14.2 Sending Characters Simultaneously to Multiple Network devices 136

15 Licenses .. 137

15.1 Third-party Software Licenses ... 137

15.2 Ansible Collections package creation .. 156

1

1 Introduction

1.1 “SmartCS modules for Ansible” Overview

SmartCS modules for Ansible is the generic name for a package which uses the Red
Hat Ansible Automation Platform (hereinafter, "Ansible") automation tool provided by
Red Hat, Inc. that includes the modules and plugins required to operate the SmartCS
console server.

Operating SmartCS via Ansible enables you to implement operations from the
console including initial build work such as the IP configuration of devices connected
to SmartCS via Ansible, which makes it possible to further reduce the operational
load of IT infrastructure within each phase of operation.

SmartCS modules for Ansible supports Ansible Collections starting from v1.3.0.
This document primarily covers the details in accordance with the providing format of
Ansible Collections.

*From v1.0 until v1.2, the modules have been provided in our original package format.
For more details, refer to "12 Appendix B. v1.0 to v1.2 Operation."

This Operation Guide is a document which describes how to use and operate
SmartCS modules for Ansible.

2

1.2 Functional overview

SmartCS modules for Ansible uses Ansible to not only configure SmartCS and obtain
the SmartCS information but also enable the operation of devices connected to the
serial port of SmartCS.

In this document, the function which enables the operation of devices connected to
SmartCS is called the "Console Access Function," and the function which configures
SmartCS and obtains the SmartCS setting information is called the "CLI Command
Function."
Moreover, the Console Access Function can also operate Ansible modules provided
by network device vendors via SmartCS.

A list of the functions and modules provided by SmartCS modules for Ansible is
shown in the following table.

Function name Module name

Console Access Function seiko.smartcs.smartcs_tty_command

CLI Command Function seiko.smartcs.smartcs_command

seiko.smartcs.smartcs_config

seiko.smartcs.smartcs_facts

3

1.2.1 Console Access Function Overview

Executing CLI commands after logging in to SmartCS via SSH sends and receives
characters to the console ports of the network devices connected to the SmartCS
serial ports.

Previously, Telnet or SSH protocol had been used to connect to the SmartCS serial
ports to directly execute operations manually. Using Ansible enables to execute
operations automatically by creating a Playbook.

This function is supported by the following Ansible modules.

Function name Module name

Console access function seiko.smartcs.smartcs_tty_command

Links the network device vendor module and

seiko.smartcs.smartcs_tty_command

Using the smartcs_tty_command module enables you to operate network devices
without an Ansible module or IP reachability via Ansible. For the specific usage, refer
to "5 Console Access Function."

Moreover, you can also link to modules provided by network device vendors to
operate the devices connected to SmartCS. For the specific usage, refer to "6 Linking
with Network Device Vendor Modules."

4

1.2.2 CLI Command Function Overview

This function executes SmartCS CLI commands via Ansible.

This function is supported by the following Ansible modules.

Function name Module name

CLI command function seiko.smartcs.smartcs_command

seiko.smartcs.smartcs_config

seiko.smartcs.smartcs_facts

The summary of the functions provided by each module in the CLI command
function is as below.

(1) smartcs_command

Executes any status display command or maintenance command in SmartCS
and obtains the results.

(2) smartcs_config
Executes any setting command in SmartCS.

(3) smartcs_facts
Obtains the model name, software version, configuration information, and other
device information from SmartCS.

 For the specific usage, refer to "7 CLI Command Function."

5

1.3 Operating environment

1.3.1 Control node / Managed node

The following explains terminology used in this document.
A "control node" is the environment which installs and runs Ansible.
A "managed node" is a SmartCS and must support login via SSHv2 when accessing
SmartCS from Ansible.

 [Control node] [Managed nodes]

*When viewed from the perspective of Ansible, which is the control node, a managed
node is just a SmartCS.
 (They are not devices connected to SmartCS.)

6

1.3.2 Operating requirements

The operating environments and combinations of the control node Ansible and the
managed nodes SmartCS are shown in the table below.

<v1.0 to v1.2>: provided as our original package.

SmartCS

modules

for Ansible

Control node environment Managed node environment
SmartCS software ver.

ansible Python NS-2250

series

NS-2240

series

v1.0 2.7.7

2.7 and above
3.6 and above

v2.0 and above Not supported

v1.1

v1.1.1

2.8.4 v2.1 and above

v1.2 2.9.15

3.6.8 v2.1 and above

<v1.3.0 and above>: provided as an Ansible Collections package.

SmartCS

modules

for Ansible

Control node environment Managed node environment
SmartCS software ver.

ansible NS-2250

series

NS-2240

series

v1.3.0

2.10.x

(>=2.10, < 2.11)

v2.1 and above

Not supported

v1.4.0

ansible 2.9.22 and above

ansible-base 2.10.x

ansible-core 2.11.x

(>=2.9.22, < 2.12)

v1.4.1

ansible 2.9.10 and above

ansible-base 2.10.x

ansible-core 2.11.x

(>=2.9.10, < 2.12)

Run SmartCS modules for Ansible by combining the control node environment and
the managed node environment according to each version.

7

<Supplemental>

(1) The following type of warning is output when running v1.3.0 and executing a
Playbook in an ansible-core2.11 environment.

[DEPRECATION WARNING]: Ansible will require Python 3.8 or newer on the
controller starting with Ansible 2.12.

This warning is output because a Python 3.8 environment is required in
ansible-core 2.12 and above, but it does not affect the operation.
You can prevent this warning from appearing by adding the following setting to
ansible.cfg.
deprecation_warnings = False

8

1.3.3 Ansible environment

Ansible can be used by installing it within the Python of the control node environment.
The Ansible environment can be built without affecting the Python running on the
control node by using the Python virtualization technology venv, so it is
recommended that you use venv to build the Ansible environment.

To build an Ansible environment using venv, refer to "11 Appendix A. Building the
Ansible Environment."

9

1.4 License

“SmartCS Modules for Ansible” uses the GNU General Public License Version3
(hereinafter, "GPLv3") as its license. For more details about GPLv3, refer to "15.1
Third-party Software Licenses" and the COPYING file included in the “SmartCS
modules for Ansible” package.

For the procedure to create an Ansible Collections package from the source
published on GitHub, refer to "15.2 Creating an Ansible Collections Package."

“SmartCS modules for Ansible” includes a modified Ansible program.

10

1.5 How to get “SmartCS modules for Ansible”

There are three ways to obtain SmartCS modules for Ansible.

(1) Obtaining SmartCS modules for Ansible from the Ansible Galaxy site

The Ansible Collections package for SmartCS can be obtained from the Ansible
Galaxy site.
https://galaxy.ansible.com/

Enter keywords such as "seiko" or "smartcs" to find the Ansible Collections
package for SmartCS page.

https://galaxy.ansible.com/seiko/smartcs

You can download and install it by executing the commands listed under [Details]
from the control node.

For the detailed procedure, refer to "2 Installation."

https://galaxy.ansible.com/
https://galaxy.ansible.com/seiko/smartcs

11

(2) Obtaining SmartCS modules for Ansible from the Ansible Automation Hub site

The Ansible Collections package for SmartCS can also be obtained from the
Ansible Automation Hub, which is a site that distributes content from Red Hat and
authorized partners.
The Ansible Automation Hub is part of the Red Hat Ansible Automation Platform
subscription and is only provided to customers with a support contract.
https://www.ansible.com/products/automation-hub

Enter keywords such as "seiko" or "smartcs" to find the Ansible Collections
package for SmartCS page.
https://console.redhat.com/ansible/automation-hub/repo/published/seiko/smartcs

You can download and install it by executing the commands listed under [Details]
from the control node.

For the detailed procedure, refer to "2 Installation."

https://www.ansible.com/products/automation-hub
https://console.redhat.com/ansible/automation-hub/repo/published/seiko/smartcs

12

(3) Obtaining SmartCS modules for Ansible from the SEIKO Solutions web site

The same file which is provided in Ansible Galaxy site is also available from the
SEIKO Solutions web site.

If you wish to obtain the software, please apply from the following URL.
https://form.seiko-sol.co.jp/m/dl_orchestrator/

https://form.seiko-sol.co.jp/m/dl_orchestrator/

13

2 Installation

2.1 Pre-installation Check

Check that Ansible is installed. If Ansible is not installed, it’s possible to install it by
“yum” or “pip” command, etc. when using CentOS and other operating systems.
For the Ansible environment build method and the ansible.cfg file preparation, refer
to "Chapter 11 Appendix A. Building the Ansible Environment."

This chapter explains the procedure for installing modules in the Ansible
Collections format which is supported from v1.3.0 of the SmartCS modules for
Ansible.

For the procedure to install the version provided as a SEIKO Solutions original
package from v1.0 to v1.2, refer to "Chapter 12 Appendix B. v1.0 to v1.2
Operation."

<Provided format and install procedure>

SmartCS modules

for Ansible

Provided format Install procedure

v1.0 SEIKO Solutions original

package

"Chapter 12 Appendix B. v1.0

to v1.2 Operation" v1.1

v1.1.1

v1.2

v1.3.0 and above Ansible Collections format "Chapter 2 Installation"

(This chapter)

14

2.2 Installation

SmartCS modules for Ansible which supports the Ansible Collections format is
provided with the following file name.

File name format Notes

seiko-smartcs-x.y.z.tar.gz

Ex. v1.3.0

seiko-smartcs-1.3.0.tar.gz

 *Regarding the version, there is no particular relationship with the Ansible
version.
 The version is assigned and provided based on SEIKO Solutions release rules.

Moreover, the namespace and collection name are as follows.

Namespace (namespace name)

seiko

Collection (collection name)

smartcs

15

This section explains the installation procedures which have been validated by
SEIKO Solutions for the SmartCS modules for Ansible in the Ansible Collections
format.
When building Ansible in a venv environment, execute each of the steps after
transitioning to the venv environment which was built to install the modules.

“SmartCS modules for Ansible” can be installed by one of the following three
methods.
There are no differences in the post-installation operation regardless of the install
procedure.

(1) Download and install from the Ansible Galaxy site

This is the simplest build procedure. It is recommended that you use this
procedure if you are able to access the Ansible Galaxy site from the control
node.

(2) Specify the file and install
This procedure directly specifies and installs the Ansible Collections file. Install
with this procedure if you obtained the SmartCS modules for Ansible directly
from SEIKO Solutions.

(3) Installation using requirements.yml
This install procedure uses the requirements.yml file. By specifying the version
of each module and where it can be obtained within the file, you can fix the
environment of each package used for the build.

16

(1) Download and install from the Ansible Galaxy site

SmartCS modules for Ansible are available on the Ansible Galaxy site.
https://galaxy.ansible.com/
https://galaxy.ansible.com/seiko/smartcs

For an ansible 2.10 and above environment, use the ansible-galaxy command
to install the SmartCS modules for Ansible.

$ ansible-galaxy collection install seiko.smartcs
$

Check the SmartCS modules for Ansible version which was installed.

$ ansible-galaxy collection list

/home/test/xxx/xxx/ansible_collections
Collection Version
------------- -------
seiko.smartcs 1.3.0
$

https://galaxy.ansible.com/
https://galaxy.ansible.com/seiko/smartcs

17

(2) Specify the file name and install

The Ansible Collections package for SmartCS file can be downloaded and
obtained as follows.

(i) Use the ansible-galaxy command to download from the Ansible Galaxy site.

$ ansible-galaxy collection download seiko.smartcs
$ ls
$ seiko-smartcs-1.3.0.tar.gz

 *The download destination is the directory specified by collections_paths
in ansible.cfg.

(ii) Download from the Ansible Galaxy site using a web browser

(iii) Obtain the package file from SEIKO Solutions.

https://form.seiko-sol.co.jp/m/dl_orchestrator/

https://form.seiko-sol.co.jp/m/dl_orchestrator/

18

After copying the downloaded Ansible Collections package for SmartCS
package to the control node, use the ansible-galaxy command to install it.

$ ansible-galaxy collection install seiko-smartcs-1.3.0.tar.gz
$

Check the SmartCS modules for Ansible version which was installed.

$ ansible-galaxy collection list

/home/test/xxx/xxx/ansible_collections
Collection Version
------------- -------
seiko.smartcs 1.3.0
$

19

(3) Installation using requirements.yml

You can install modules using the requirements.yml file.

collections:
- name: seiko.smartcs

version: 1.3.0

(requirements.yml example)

Because multiple modules can be listed in requirements.yml, this is a
convenient mechanism when managing an environment using Ansible
Collections.

Specify requirement.yml and execute the ansible-galaxy command to install.

$ ansible-galaxy collection install –r requirement.yml
$

Check the SmartCS modules for Ansible version which was installed.

$ ansible-galaxy collection list

/home/test/xxx/xxx/ansible_collections
Collection Version
------------- -------
seiko.smartcs 1.3.0
$

20

2.3 Upgrading

When using the ansible-galaxy command to upgrade the version of an installed
Ansible Collections package, you can use either the "--upgrade" option or the
"--force" option to upgrade the installed package.

(1) Using the --force option

$ ansible-galaxy collection install seiko.smartcs --force
$

When the same module is installed and downloaded in an environment where
the Ansible Collections package is already installed, it will normally result in an
error. However, you can perform an overwrite install by adding the --force
option when executing each operation.

This option is also valid for an install using "-r requirements.yml."

$ ansible-galaxy collection install –r requirement.yml --force
$

(2) Using the --upgrade option (ansible-core2.11 and above)

$ ansible-galaxy collection install seiko.smartcs --upgrade
$

The --upgrade option was added from ansible-core2.11. You can also use this
option to upgrade a module.

21

2.4 Deleting the installed collection files

With the ansible-galaxy command, a dedicated command for deleting the installed
Ansible Collection package is not provided, but it can be deleted by deleting the
folder where the installed Ansible Collections files are actually stored.

The directory where the Ansible Collections package is installed can be specified
with the collections_paths parameter in ansible.cfg.

https://docs.ansible.com/ansible/latest/reference_appendices/config.html#colle
ctions-paths

https://docs.ansible.com/ansible/latest/reference_appendices/config.html%23collections-paths
https://docs.ansible.com/ansible/latest/reference_appendices/config.html%23collections-paths

22

2.5 About dependent packages

SmartCS modules for Ansible uses network_cli as the connection plugin. Therefore,
ansible.netcommon is configured as a dependent package.

If the ansible.netcommon collection, which provides the network_cli connection
plugin, is not installed on the control node at the time of installation (when
executing the ansible-galaxy collection install command), the process to install the
ansible.netcommon collection is also carried out.

23

2.6 Other

The following explains how to manage the Ansible Collections package using the
ansible-galaxy command.

(1) Specify and install (download) a particular version.

When using the ansible-galaxy command to specify seiko.smartcs, the
namespace, and collection name to install and download, typically the latest
version registered in Ansible Galaxy is automatically installed.

If you wish to specify a particular version, you can install and download it by
specifying ":" (colon) and the version name after the collection name.
$ ansible-galaxy collection install seiko.smartcs:1.4.0
$

Moreover, you can also install and download packages that are assigned
identifiers other than the version name with the same procedure.
$ ansible-galaxy collection install seiko.smartcs:1.4.0-dev1
$

To specify the package with requirements.yml, specify the version as follows.

collections:
 - name: seiko.smartcs
 version: 1.3.0

24

3 Preparations

3.1 Preparing the SmartCS

The following describes the SmartCS settings required when using either the console
access function or the CLI command function.

(1) Terminal output control settings
Configure the terminal output control settings as follows to run the various
modules provided by “SmartCS modules for Ansible” in the proper manner.

(0)NS-2250# set terminal default prompt device on
(0)NS-2250# set terminal default prompt hostname on

*The settings shown above are the default values for the terminal output
control settings.

25

3.2 Preparation for control node

The following describes the preparation on the control node side to execute Ansible
which is required when using either the Console Access Function or the CLI
Command Function.

(1) Registering the SSH Host Public Key
Before running Playbook, log in to SmartCS via SSH in advance from the
management host and register the SmartCS public host key on the
management host.

[testuser@ansible-host ~]$ ssh smartcs
The authenticity of host 'smartcs (172.31.8.16)' can't be established.
ECDSA key fingerprint is SHA256:/DieiZVP5ggJlupmTPqj/djKRfVRhmhzBPLHZ20jNZ8.
ECDSA key fingerprint is MD5:98:ea:d9:8b:aa:bd:af:13:56:7c:62:ee:7c:6c:d7:61.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added 'smartcs,172.31.8.16' (ECDSA) to the list of known hosts.
Console Server Authentication.

Alternatively, disable the host key check in the ansible.cfg settings (The following
"host_key_checking" line is commented out by default to enable host key
authentication. When the line is commented out, host key authentication is not
performed during SSH connections) when accessing a network device whose host
key is not registered on the management host.

uncomment this to disable SSH key host checking
host_key_checking = False

26

4 Creating a Playbook Compatible with Ansible Collections

4.1 Module specification

In Ansible2.10 and above versions standard equipped with the Ansible Collections
mechanism, the method for specifying the module name in Playbook creation has
changed.
The following explains how to create a Playbook that is compatible with Ansible
Collections.

(1) Conventional specification (v1.0 to v1.2)

The module in the tasks section was specified as follows for “SmartCS
modules for Ansible” v1.0 to v1.2.

 tasks:
 - smartcs_command:
 commands:
 - show version
 - show config running

(2) Specifying in FQCN format

In “SmartCS modules for Ansible” v1.3.0 and above versions that are
compatible with the Ansible Collections mechanism, the module name must be
specified in Full Qualified Collection Name format (hereinafter "FQCN").

Because the Namespace is "seiko" and the Collection is "smartcs" for SmartCS
modules for Ansible, it is specified as "seiko.smartcs.module name."
The following is a Playbook example (task section only) which specifies the
smartcs_command module.

 tasks:
 - seiko.smartcs.smartcs_command:
 commands:
 - show version
 - show config running

27

Specify the modules provided by SmartCS modules for Ansible in FQCN format
as shown below.

Specification for v1.0 to v1.2 Specification for v1.3.0 and above

(FQCN format)

*Ansible Collections format specification

smartcs_tty_command seiko.smartcs.smartcs_tty_command

smartcs_command seiko.smartcs.smartcs_command

smartcs_config seiko.smartcs.smartcs_config

smartcs_facts seiko.smartcs.smartcs_facts

In this document, each module name is basically listed in FQCN format.
*Please note that some locations show images, etc. which show the name
specification used for v1.0 to v1.2.

28

(3) Specifying in the collections directive format

Conventional (v1.0 to v1.2) module name and alias specifications are enabled
by using the collections directive within a Playbook.
The specifications for modules provided by SmartCS modules for Ansible with
the collections directive are shown below.

- name: "Collect the default facts "
 hosts: smartcs

 collections:
 - seiko.smartcs

 tasks:
 - name: "run smartcs_facts with default"
 facts:
 gather_subset:
 - default

The following table shows the module names that can be specified when using
the collections directive.

Specification for v1.0 to v1.2 Module names when specifying

the collections directive

smartc_tty_command seiko.smartcs.smartcs_tty_command

smartcs_tty_command

tty_command

smartcs_command seiko.smartcs.smartcs_command

smartcs_command

command

smartcs_config seiko.smartcs.smartcs_config

smartcs_config

config

smartcs_facts seiko.smartcs.smartcs_facts

smartcs_facts

facts

29

4.2 Connection plugin (network_cli) specification

SmartCS modules for Ansible uses network_cli as the connection plugin. In
Ansible2.10 and above versions standard-equipped with the Ansible Collections
mechanism, the network_cli connection plugin is a function provided by the
ansible.netcommon collection, so the connection plugin and the optional values must
be specified in FQCN format in Playbook creation.
Reference: https://galaxy.ansible.com/ansible/netcommon

The method for specifying each in FQCN format is shown below.

Specification for v1.0 to v1.2

(specification up to ansible2.9)

Specification for v1.3.0 and above (FQCN format)

*Ansible Collections (ansible2.10 and above) format

specification

ansible_connection: network_cli ansible_connection: ansible.netcommon.network_cli

ansible_network_os: smartcs ansible_network_os: seiko.smartcs.smartcs

ansible_become_method: enable ansible_become_method: ansible.netcommon.enable

A Playbook example is shown below.

- name: "run show version on SmartCS "
 hosts: smartcs

 tasks:
 - name: "run smartcs_command"
 seiko.smartcs.smartcs_command:
 commands: show version

 vars:
 - ansible_connection: ansible.netcommon.network_cli
 - ansible_network_os: seiko.smartcs.smartcs
 - ansible_user: testuser01
 - ansible_password: testpassword01
 - ansible_become_method: ansible.netcommon.enable
 - ansible_become: yes
 - ansible_become_password: "\n"

https://galaxy.ansible.com/ansible/netcommon

30

5 Console Access Function

5.1 Preparing the SmartCS

This section explains the Console Access Function using the smartcs_tty_command
module.
For an explanation of linking with the Ansible modules of network device vendors to
operate devices connected to SmartCS, refer to "Chapter 6 Linking with Network
Device Vendor Modules."

(1) Check the version

Check that the SmartCS system software is v2.1 or above.

(0)NS-2250# show version
System : System Software Ver 2.1 (Build 2019-MM-DD)
：

(0)NS-2250#

(2) Enable SSH connections
Check that the SSH server is enabled.
Change the anthentication method to password authentication from default
setting of public key authentication.

(0)NS-2250# enable sshd
(0)NS-2250# set sshd auth basic
(0)NS-2250#

If the filter function is enabled or the connection permission setting from a
specific host is set, set the SSH connection from the management host PC to
be allowed.

31

(3) Create users for extusr groups and granting console access privileges

To use the console access function, a user that belongs to the extusr group
must be created. Then configure the user to grant tty manage function and port
access.

(0)NS-2250# create user smartcs-ansible group extusr password
Changing password for user smartcs-ansible.
New password:
Retype new password:
Password for smartcs-ansible changed
(0)NS-2250# set user smartcs-ansible permission ttymanage on
(0)NS-2250# set user smartcs-ansible port 1-48
(0)NS-2250#

(4) Enable the console access function
Configure the setting to enable the console access function.

(0)NS-2250# enable ttymanage
(0)NS-2250#

The SmartCS setting in order to use the smartcs_tty_command module is shown
above.

32

5.2 Preparation for creating a Playbook

This section explains the setting values required when Playbook creation to use
the Console Access Function with the smartcs_tty_command module.

(1) Module setting

Specify "seiko.smartcs.smartcs_tty_command" as the module to use.

(2) Connection plugin setting
Configure "ansible.netcommon.network_cli" as the connection plugin

ansible_connection: ansible.netcommon.network_cli

(3) Network OS setting
Configure ”seiko.smartcs.smartcs” as the network OS.

ansible_network_os: seiko.smartcs.smartcs

(4) User name and password settings to connect to SmartCS
Specify the user name and password to connect to SmartCS.
Configure the user who belongs to the extusr group created in section 5-1.

ansible_user: smartcs-ansible
ansible_password: password

33

5.3 Playbook Example

- hosts: smartcs
 gather_facts: no

 tasks:
 - name: "smartcs_tty_command"
 seiko.smartcs.smartcs_tty_command:
 tty: 1
 sendchar :
 - 'show version'

 vars:
 - ansible_connection: ansible.netcommon.network_cli
 - ansible_network_os: seiko.smartcs.smartcs
 - ansible_user: smartcs-ansible
 - ansible_password: password

For a description of each options of “smartcs_tty_command” modules, see
section 8-1.

34

6 Linking with Network Device Vendor Modules

6.1 Overview

By enabling the SmartCS SSH transparent connection function (sshxpt), you can
operate Ansible modules provided by network device vendors through SmartCS
and configure or acquire information from devices connected to SmartCS.

Because the network devices are operated from the console, they can be operated
via SmartCS from Ansible even under the default factory settings or if the IP
address has not been configured. The control commands described in the
Playbook and return value error decisions, etc. operate as defined in the Ansible
module which is being used.

To learn more about how to use modules when linking to SmartCS, refer to the
documents and web sites provided by each vendor.

35

6.2 Preparation for SmartCS

The following settings must be configured in SmartCS when linking to network
device vendor modules to operate the devices connected to SmartCS.
Steps (2), (3), and (4) are the settings for using the smartcs_tty_command module,
and steps (5), (6), and (7) are the settings for linking to and operating network
device vendor modules.

(1) Check the version

Check that the SmartCS system software is v2.1 or above.

(0)NS-2250# show version
System : System Software Ver 2.1 (Build 2019-MM-DD)
：

(0)NS-2250#

(2) Enable SSH connections
Check that the SSH server is enabled.
Change the anthentication method to password authentication from default
setting of public key authentication.

(0)NS-2250# enable sshd
(0)NS-2250# set sshd auth basic
(0)NS-2250#

If the filter function is enabled or the connection permission setting from a
specific host is set, set the SSH connection from the management host PC to
be allowed.

36

(3) Create users for extusr groups and granting console access privileges

To use the console access function, a user that belongs to the extusr group
must be created. Then configure the user to grant tty manage function and port
access.

(0)NS-2250# create user smartcs-ansible group extusr password
Changing password for user smartcs-ansible.
New password:
Retype new password:
Password for smartcs-ansible changed
(0)NS-2250# set user smartcs-ansible permission ttymanage on
(0)NS-2250# set user smartcs-ansible port 1-48
(0)NS-2250#

(4) Enable the console access function
Configure the setting to enable the console access function.

(0)NS-2250# enable ttymanage
(0)NS-2250#

(5) Creating users for portusr groups and granting console access privileges
To use the SSH Transparent Connection function (sshxpt), create a user in the
portusr group and configure it to grant port access privileges.

(0)NS-2250# create user smartcs-port group portusr password
Changing password for user smartcs-port.
New password:
Retype new password:
Password for smarcs-port changed
(0)NS-2250# set user smartcs-port port 1-48
(0)NS-2250#

37

(6) Opening port

Configure the sshxpt option for the serial port to enable the SSH transparent
connection function (sshxpt) and open the TCP port. The initial value of the port
starting number is 9301, and the numbers continue in sequence from the
starting number up to the total number of serial ports.
These port numbers correspond to the numbers specified in the "ansible_port"
when accessing from Ansible.

(0)NS-2250# set portd tty 1 session both both sshxpt
(0)NS-2250#

The port starting number can be changed in the settings.
The configurable setting range is from 1025 to 65000.

(0)NS-2250# set portd sshxpt 9301
(0)NS-2250#

When the filter function is enabled or when permitting access from a specific
host, configure SmartCS to allow SSH connections from the management host
PC to the port server.

(7) Line feed code setting
Configure SmartCS to send line feed codes when using the SSH transparent
connection function (sshxpt) to connect to a network devices. The network
devices receives a prompt when the line feed codes are sent, and the various
commands described in the Playbook are subsequently executed.
Line feed codes can be selected from CR, LF, CRLF, and none (no
transmission) . SmartCS is configured by default to not send line feed codes.

(0)NS-2250# set portd tty 1 connted send_nl cr
(0)NS-2250#

The SmartCS setting for linking to and operating network device vendor modules is
shown above.

38

6.3 Preparation for creating a Playbook

It is expected that Ansible modules which use the network_cli connection plugin
provided by network device vendors are made so as to normally access via SSH.

Therefore, in order to achieve a link with SmartCS, a separate Playbook must be
created for network device control login and logout processes.

39

In addition, you can execute a login Playbook, logout Playbook, and operation
Playbook as a series of operations by creating a management Playbook as shown
in the figure below.

Specify the smartcs_tty_command module in login Playbooks and logout
Playbooks. Specify the prompts received in the login and logout processing in
recvchar as well as the user name, password, and logout commands, etc. for the
sendchar of each Playbook to create a Playbook to enalbe logging in to andout
from the network devices.

40

In an operation Playbook, specify the third-party module to link to and describe the
commands that you wish to execute. Use the TCP port opened when enabling the
SSH transparent connection function (sshxpt) to connect to the network devices.
(Under the default setting, tty1 operations use port 9301.)

The following explains the setting values required to create a Playbook for
operation.

(1) Module

Specify the network device vendor module to link.
(Ex.)
"xxx_command"
"xxx_config"
"xxx_facts"

(2) Connection plugin setting
Configure "ansible.netcommon.network_cli" as the connection plugin.

ansible_connection: ansible.netcommon.network_cli

41

(3) Network OS

Specify the network OS to specify in the network device vendor module to be
collaborated.

ansible_network_os: xxx

(4) User name and password settings to connect to SmartCS
Specify user name and password of the SmartCS port user group created in
"6.2 (2) Grant user creation and console access authority to the port user
group."

(5) Port number

Specify the connection port configured in "6.2 (3) Open the connection port."

ansible_port: 9301

42

6.4 Playbook example

Ex.) Management Playbook

- name: "Login with smartcs_tty_command"
 import_playbook: login.yml

- name: "Exec Task"
 import_playbook: operation.yml

- name: "Logout with smartcs_tty_command"
 import_playbook: logout.yml

43

Ex.) Login Playbook (login.yml)

- hosts: smartcs
 tasks:
 - name: "Login by Console"
 seiko.smartcs.smartcs_tty_command:
 tty: 1
 recvchar:
 - 'username: '
 - 'password: '
 - 'switch>'
 sendchar:
 - '__NL__'
 - 'user'
 - 'secret'

 vars:
 - ansible_connection: ansible.netcommon.network_cli
 - ansible_network_os: seiko.smartcs.smartcs
 - ansible_user: smartcs-ansible
 - ansible_password: password

Ex.) Logout Playbook (logout.yml)

- hosts: smartcs
 tasks:
 - name: "Logout by Console"
 seiko.smartcs.smartcs_tty_command:
 tty: 1
 recvchar:
 - 'username: '
 - 'password: '
 - 'switch>'
 sendchar:
 - 'exit'

 vars:
 - ansible_connection: ansible.netcommon.network_cli
 - ansible_network_os: seiko.smartcs.smartcs
 - ansible_user: smartcs-ansible
 - ansible_password: password

For a descripition of the each “smartcs_tty_command” module options, see section
8-1-2.

44

Ex.) Operation Playbook (operation.yml)

- hosts: smartcs
 gather_facts: no
 tasks:
 - name: "Task"
 xxx.xxx.xxx_command:
 commands:
 - show version
 - show interfaces
 - show arp
 - show ip route

 vars:
 - ansible_connection: ansible.netcommon.network_cli
 - ansible_user: smartcs-port
 - ansible_password: password
 - ansible_port: 9301
 - ansible_network_os: xxx.xxx.xxx
 - ansible_become: yes
 - ansible_become_method: ansible.netcommon.enable
 - ansible_become_password: secret
 - ansible_command_timeout: 60

45

6.5 Instructions and Directions for Use

The limitations and precautions when linking to third-party modules to operate
network devices are described below.

(1) network_cli connection plugin support

Only third-party modules which support “network_cli” as a connection plugin
can link to SmartCS.

(2) Network device prompt specification
The network devices prompt definition must be the same when accessing via
SSH or from the console.

(3) Processing speed care (timeout period adjustment)
Control is performed from the console of the network devices, so the
processing speed is slower than connecting directly to the device via SSH or a
regular Ansible operation. Therefore, the timeout specified by
"ansible_command_timeout" must be set to a longer period.

46

7 CLI Command Function

7.1 Preparing the SmartCS

The following describes the SmartCS preparations required to use the CLI command
function.

(1) Enable SSH connections

Check that the SSH server is enabled.
Change the authentication method to password authentication from default
setting of public key authentication.

(0)NS-2250# enable sshd
(0)NS-2250# set sshd auth basic
(0)NS-2250#

If the filter function is enabled or the connection permission setting from a
specific host is set, set the SSH connection from the management host PC to
be allowed.

47

7.2 Preparations for creating Playbook

The following explains the setting values required to create a Playbook when
executing the CLI Command Function.

(1) Module setting

Specify the modules to use from the following options.
”smartcs_command”
“smartcs_config”
“smartcs_facts”

(2) Connection plugin setting
Configure "ansible.netcommon.network_cli" as the connection plugin.

ansible_connection: ansible.netcommon.network_cli

(3) Network OS setting
Configure "seiko.smartcs.smartcs" as the network OS.

ansible_network_os: seiko.smartcs.smartcs

(4) User name and password settings to connect to SmartCS
Specify the user name and password to connect to SmartCS.
This setting works with users created in either of the following groups.
・General user group
・Extusrr group

(5) Privileged user setting
Depending on the module or options used, the module does not function
correctly without switching to the privileged user.
In such a case, configure the Playbook as follows.

ansible_become: yes
ansible_become_method: ansible.netcommon.enable
ansible_become_password: password (privileged user password)

48

7.3 Module and privileged user

The following table lists modules and options which do not function correctly
without switching to the privileged user.
○: Requires a transition to the privileged user
-: Operates normally with or without trannsition to the privileged user.

Module name Option name Transition to the privileged user

smartcs_command commands Depends on the commands specified
by the “commands” option.

smartcs_config lines ○

src ○

smartcs_facts all ○

default ―

tty ―

config ○

Refer to the Command Reference for information on whether you need to transition
to a privileged user for optional commands.

The “smartcs_facts” option name is the value specified by the “gather_subset”
option. Also, for example "!tty" is specified, changing to privileged user is required
since everything other than the tty option is specified.

49

7.4 Playbook Example

- name: smartcs_command
 hosts: smartcs
 gather_facts: no
 tasks:
 - seiko.smartcs.smartcs_command:
 commands:
 - show version
 - show config running

 vars:
 - ansible_connection: ansible.netcommon.network_cli
 - ansible_network_os: seiko.smartcs.smartcs
 - ansible_user: somebody
 - ansible_password: password
 - ansible_become: yes
 - ansible_become_method: ansible.netcommon.enable
 - ansible_become_password: "\r"

See section 8-2-2 for a description of each option in the “smartcs_command”
module.

If a password is not givent to the privileged user, configure "\r" for
“ansible_become_password” as shown in the example above.

50

8 Modules

8.1 seiko.smartcs.smartcs_tty_command

The following explains the modules used with the console access function.

8.1.1 Overview

This function sends the specified characters to the console port of the network
devices connected to the SmartCS serial port and retrieves the console input/output
results.

51

8.1.2 Options

The following table lists the options for this module.

Option name Required Default Setting

range

Description

cmd_timeout 10 1 to 7200

Set the timeout (seconds) from

sending the characters specified in

sendchar/src until receiving the

characters specified in recvchar.

error_detect_on_sendchar

 cancel cancel

exec

Set whether or not to send the

following characters when an error

occurs after sending the characters

specified in sendchar/src.

When set to "cancel," characters are

not sent after a character

transmission error occurs.

When set to "exec," the next

characters are sent even after a

character transmission error occurs.

52

Option name Required Default Setting

range

Description

error_detect_on_module ok ok

failed

Set whether to configure the ansible

command (ansible-playbook

command) execution result to "ok" or

"failed" when an error occurs after

sending the characters specified in

sendchar/src.

When set to "ok," the ansible

command result is "ok" without

resulting in an error even if an error

occurs after sending the characters.

When set to "failed," the ansible

command results in an error and is

designated as "failed" when an error

occurs after sending the characters.

error_recvchar_regex Set a list of characters using regular

expressions to detect an error when

the characters received after

sending the characters specified in

sendchar/src include a particular set

of characters.

This setting can be specified in list

format with a maximum of eight

entries.

In the event that an error is detected,

the ansible command is set to "ok"

or "failed" according to the

error_detect_on_module option

setting.

nl cr crlf

cr

lf

Set the character line feed code sent

by sendchar/src.

53

Option name Required Default Setting

range

Description

recvchar Set a list of received characters to

wait for after sending the characters

specified in sendchar/src.

This setting can be specified in list

format with a maximum of 16 entries.

recvchar_regex Use regular expressions to set the

character list specified in recvchar.

This setting can be specified in list

format with a maximum of eight

entries.

54

Option name Required Default Setting

range

Description

sendchar (○) Set the characters to send to the

target tty. The transmitted character

string is sent in order from the top of

the list specified in sendchar.

In addition to sending the specified

characters, the following sending

methods can also be specified for the

sendchar option.

__NL__

Send only the line feed code. The

line feed code is the value set in the

nl option.

__CTL__:hex

Send the control character.

For the table of specified hex values

and the corresponding control

characters,

refer to "8.1.5-(4)-5 Sending control

characters."

__WAIT__:sec

Set the timeout time to wait until the

characters specified in recvchar are

received for each transmitted

character string. When left

unspecified, the timeout time is set to

the value configured in the

cmd_timeout option.

__NOWAIT__

Do not wait for the characters

specified in recvchar for each

transmitted character string.

55

Immediately send the next

characters after sending the

characters specified in sendchar/src.

__NOWAIT__:sec

Do not wait for the characters

specified in recvchar for each

transmitted character string. After

sending the characters specified in

sendchar/src, wait for the specified

period of time (seconds) before

sending the next characters.

The range of time that can be

configured in the sendchar option is

from 1 to 7200 (seconds).

It is recommended that the list of

characters sent with sendchar be

enclosed within single or double

quotation marks.

Either sendchar or src must be

specified.

This option runs exclusively from the

src option.

src (○) Specify the path to the file which lists

the characters to send to the target

tty line by line.

This option specifies either an

absolute path of the specified file, or

a relative path from the Playbook

save directory.

Either src or sendchar must be

specified.

This option runs exclusively from the

sendchar option.

56

Option name Required Default Setting

range

Description

tty ○ 1 to 48 Set the tty to send the characters to.

This option can be configured in

ttylist format (1-16, 1, 2-8, 16). Send

the characters specified in

sendchar/src for each tty number

when multiple tty numbers are

specified.

ttycmd_debug off off

on

detail

Display the following information after

the character transmission

processing by means of sendchar/src

has ended.

・tty option setting

・cmd_timeout option setting

・nl option setting

・ error_detect_on_sendchar option

setting

・recvchar option setting

・recvchar_regex option setting

・error_recvchar_regex option setting

This option is used for debugging.

57

Option name Required Default Setting

range

Description

custom_response False boolean

value

Send a return value in a

format which can distinguish

between transmitted

characters and received

characters in addition to

stdout and stdout_lines.

Separate and output the

execute_command and

response for each

transmitted character string.

custom_response_delete_nl False boolean

value

Delete only the line feed line

for the custom_response

output.

custom_response_delete_lastline False boolean

value

Delete the last line of the

response for the

custom_response output.

*The purpose of this option is

to not display the prompt

after executing a CLI

command.

58

Option name Required Default Setting

range

Description

initial_prompt Specify the characters which

are expected to be received

after sending the

initial_prompt_check_cmd.

This setting can also be

specified using a regular

expression.

The pre-check processing

runs when this setting is

specified.

initial_prompt_check_cmd __NL__

(line

feed)

 Specify a command to check

the console prompt status

before sending the

characters specified in

sendchar/src.

If left unspecified, it sends

__NL__ (line feed).

initial_prompt_check_cmd_timeout 5 1 to 30 Specify the time to wait until

checking the received

characters after sending the

initial_prompt_check_cmd.

escape_cmd Specify the characters to

send when unable to receive

the initial_prompt after

sending the

initial_prompt_check_cmd.

escape_cmd_timeout 5 1 to 30 Specify the time to wait until

checking if the initial_prompt

is included after sending the

escape_cmd.

59

escape_cmd_retry 3 0 to 8 Specify the number of times

to retry sending the

initial_prompt_check_cmd

when the initial_prompt is not

received after sending the

escape_cmd.

60

8.1.3 Playbook Example

The following shows a Playbook example for this module.

- name: Configure_ipaddress
 hosts: smartcs
 gather_facts: no

 tasks :
 - name : Configure NS-2250 ipaddress by Console
 seiko.smartcs.smartcs_tty_command :
 tty: 1
 nl : cr
 cmd_timeout : 5
 recvchar :
 - 'NS-2250 login: '
 - 'Password: '
 - '(c)NS-2250> '
 - '(c)NS-2250# '
 - '[y/n] ? '
 - 'logout: somebody/console'
 sendchar :
 - '__NL__'
 - 'somebody'
 - '__NL__'
 - 'su'
 - '__NL__'
 - 'set ipaddr eth1 192.168.0.1/24'
 - 'write'
 - 'y'
 - 'exit'
 - 'exit'

 vars:
 - ansible_connection: ansible.netcommon.network_cli
 - ansible_network_os: seiko.smartcs.smartcs
 - ansible_user: smartcs-ansible
 - ansible_password: password
 - ansible_command_timeout: 60

61

8.1.4 Return Values

The following table lists the return values for this module.

Name Description Trigger Type

stdout_lines Output a list separated by

each line feed character

for the characters sent

and received by the

console.

The return value creates a

list for each transmitted

character string specified

in sendchar/src.

When the command

execution is successful

List

stdout Output the characters sent

and received by the

console.

The return value creates a

list for each transmitted

character string specified

in sendchar/src.

When the command

execution is successful

List

pre_stdout_lines Output a list separated by

each line feed character

for the characters sent

and received by the

console when the

pre-check function works.

When the initial_prompt

setting is configured and

the command execution

is successful

List

pre_stdout Output the characters sent

and received by the

console when the

pre-check function works.

When the initial_prompt

setting is configured and

the command execution

is successful

List

stdout_lines_custom For the characters sent

and received by the

console, output a list in a

format which distinguishes

between transmitted

characters

When the

custom_response setting

is enabled and the

command execution is

successful

List

62

(execute_command) and

received characters

(response).

63

8.1.5 Explanations

The following explains the operation of each option.

(1) sendchar/src and recvchar operation

sendchar/src sends the specified characters in order from the top.
recvchar waits to see whether or not the matching characters are included in
the input/output content after sending the characters. When the matching
characters are received, it sends the next characters.
*The figure below shows an example of specifying the sendchar option.

64

(2) Operation when specifying multiple tty's

The tty option can be configured in ttylist format (multiple specifications
including hyphens and commas). If multiple tty's are specified, it sends the
characters specified in sendchar/src for each tty number.
*The figure below shows an example of specifying the sendchar option.

65

(3) Operation when recvchar is not configured

If recvchar (recvchar_regex) is not configured, sendchar/src waits until the
cmd_timeout period has passed before sending the next characters.
*The only parameters which are essential for the smartcs_tty_command
module are the tty and sendchar/src options.
*The figure below shows an example of specifying the sendchar option.

If error_detect_on_sendchar is set to "cancel" (default value), it does not send
the next characters if an error occurs (timeout error indicated above) when
sending the characters specified in sendchar/src. Therefore,
error_detect_on_sendchar is set to "exec" in the example above.

66

(4) Special sendchar/src settings

In addition to sending the specified characters, sendchar/src can be set to
special sending methods by specifying certain options.

1. Send only the line feed code.

__NL__ option

Set the transmitted character string to "__NL__" to send only the line feed
character.
The transmitted line feed code is the value set in the nl option.
This option can be used when setting a blank password in password entry
situations such as performing login processing operations from the console.
*The figure below shows an example of specifying the sendchar option.

67

2. Set a timeout period for each transmitted character string.

__WAIT__：sec option

The characters specified in sendchar/src wait for the characters configured
in recvchar for the period of time set in the cmd_timeout option (default of
10 seconds).
If the commands executed on the network devices console by the
transmitted character string take time to output the results (execution of
commands to retrieve the running config or support information), only the
specific transmitted character string can change the timeout period.

In the following example, the timeout value for recvchar is the default of 10
seconds, but the timeout period is set to 30 seconds only when sending the
"show config running" characters.
*The figure below shows an example of specifying the sendchar option.

68

3. Setting to not wait for recvchar for each transmitted character string.

__NOWAIT__ option

This option immediately sends the next characters without waiting for the
period of time set in the cmd_timeout option.
*Transmits approximately one second later.

This option can be used when you wish to sequentially send characters to
the console connection destination without waiting for recvchar.
*The figure below shows an example of specifying the sendchar option.

69

4. Setting to wait only for a set period of time without waiting for recvchar for

each transmitted character string.

__NOWAIT__：sec option

If the recvchar setting is configured, this option checks whether or not the
recvchar are included in the input/output results after sending the
characters and sends the next characters if they are included.
However, depending on the operation that you wish to perform on the
network devices console, it may not function as intended based on these
fundamental operations.

(Ex.)
・Characters such as "#" and ">" are set in recvchar, which would normally
wait for a prompt from the network devices, but ">" is included in the output
of the executed command, and the next string is sent.

・When executing a reboot or a version upgrade command, various
characters and symbols are output to the console, which unintentionally
matches recvchar, and the next characters are sent during the reboot, etc.

In order to perform console operations as intended through the Playbook
as much as possible in the kinds of situations described above, you can set
the option to not wait for recvchar for each transmitted character string.
*The figure below shows an example of specifying the sendchar option.

70

71

5. Send a control character

__CTL__ option

Specify "__CTL__:hex" in sendchar/src when sending a control character.
The following range of control characters can be sent.
00 : [Ctrl-@]
01 : [Ctrl-A]
02 : [Ctrl-B]
03 : [Ctrl-C]
04 : [Ctrl-D]
05 : [Ctrl-E]
06 : [Ctrl-F]
07: [Ctrl-G]

08 : [Ctrl-H]
09 : [Ctrl-I]
0a : [Ctrl-J]
0b : [Ctrl-K]
0c : [Ctrl-L]
0d : [Ctrl-M]
0e : [Ctrl-N]
0f : [Ctrl-O]

10 : [Ctrl-P]
11 : [Ctrl-Q]
12 : [Ctrl-R]
13 : [Ctrl-S]
14 : [Ctrl-T]
15 : [Ctrl-U]
16 : [Ctrl-V]
17 : [Ctrl-W]

18 : [Ctrl-X]
19 : [Ctrl-Y]
1a : [Ctrl-Z]
1b : [Ctrl-[] / ESC
1c : [Ctrl-\]
1d : [Ctrl-]]
1e : [Ctrl-^]
1f : [Ctrl-_]
7f : [Delete] / Ctrl-?

*The leftmost value is the "hex" part of __CTL__:hex and the value
specified in the Playbook.

This option can be used when sending a control character from the
console.
Ex: stop the ping execution. Send after executing a command on a specific
network device, etc. *The figure below shows an example of specifying the
sendchar option.

72

6. Combine special sending methods

The following table shows combinations of sendchar/src sending methods.

Configuration method Notes

show version Send characters

show version __WAIT__：sec Wait for recvchar for the configured
period of time after sending the
characters

show version __NOWAIT__ Immediately send the next
characters after sending the
characters.

show version __NOWAIT__：sec Wait only for the configured period of
time after sending the characters.

__NL__ Send a line feed

__NL__ __WAIT__：sec Wait for recvchar for the configured
period of time after sending a line
feed

__NL__ __NOWAIT__ Immediately send the next
characters after sending a line feed.

__NL__ __NOWAIT__：sec Wait only for the configured period of
time after sending a line feed.

__CTL__:03 Send a control character.

__CTL__:03 __WAIT__:sec Wait for recvchar for the configured
period of time after sending the
control character.

__CTL__:03 __NOWAIT__:sec Send the next characters after
sending the control character and
waiting for the configured period of
time.

__CTL__:03 __NOWAIT__ Immediately send the next
characters after sending the control
character.

*The "show version" part is an example of when some kind of transmitted

73

character string is specified.

*The 03 specified in the "__CTL__" setting is an example of specifying
Ctrl+C.

74

(5) Specify the transmitted character string with an external file

In addition to declaring the transmitted character string in a list format with the
sendchar option in a Playbook, an external file can also be loaded and
executed with the src option.
*The figure below shows an example of specifying the src option.

75

(6) Function for checking the console status before sending the characters

(pre-check function)

You can check the state expected by the console of the network devices (ex:
login prompt state) before sending the characters specified in the sendchar/src
option.
Send any command (default is a line feed) specified in
initial_prompt_check_cmd before sending the characters specified in the
sendchar/src option by setting the initial_prompt option. Check whether or not
there is a partial match between the characters specified in initial_prompt and
those included in the command result. If there is no match, send any command
specified in escape_cmd (ex: exit) and check the result once again for a partial
match.
The initial_prompt can be configured with a regular expression.

Refer to the figure below for the operational flow of the pre-check function.

76

<Supplemental>

1. This function operates when the initial_prompt option is configured.
A line feed is sent when initial_prompt_check_cmd is unspecified.
*By default, __NL__ is configured, and the line feed code depends on the NL
option.

2. When this function is running, the Playbook results in an error before sending the

characters specified in sendchar/src in the following instances.

・escape_cmd setting is not configured
initial_prompt_check_cmd is sent, and the expected characters are not received.

・escape_cmd setting is configured, and the number of retries reaches the upper
limit
The expected characters are not received after sending escape_cmd for the
number of retries.

3. When this function runs, and the Playbook exits normally, the following return

values are also output.
The values for the console input/output results are output when sending
initial_prompt_check_cmd and escape_cmd.

・pre_stdout_lines
Returns a list separated by each line feed character of the console input/output
content sent and received in the check processing before sending the characters
specified in sendchar/src.

・pre_stdout
Returns the console input/output content sent and received in the check
processing before sending the characters specified in sendchar/src.

4. Even if this function is used, there is no guarantee that it will return the status

expected by the console in every situation.

77

(7) error_detect_on_sendchar operation

In some cases, sending the characters specified in sendchar/src may result in
an error for the following reasons.

<Causes of character transmission errors>

Error cause Cause

Unable to receive recvchar before the end of the
timeout period

Error:: Timeout.

Unable to connect to the
target tty

Unable to connect,
because there is no
access permission
setting.

Error:: Not allowed.

Unable to connect due
to exclusive control.

Error:: Session limit over.

Unable to connect to the
tty management
daemon.

Error:: Connection closed.

Detected the characters
configured in
error_recvchar_regex.

Error:: Matched “xxx”.

Do not send the next characters when
error_detect_on_sendchar is set to "cancel"

Error:: After error.

If the next characters are sent when these errors occur, the system may
operate in a different way than expected.
For this reason, error_detect_on_sendchar is provided as an option to
configure the following operations
・Send the characters immediately after the error occurs
・Do not send the characters immediately after the error occurs

78

1. Operation when error_detect_on_sendchar:cancel is configured

*The default value is error_detect_on_sendchar:cancel.

2. Operation when error_detect_on_sendchar:exec is configured

79

(8) error_detect_on_module operation

In the smartcs_tty_command module, it directly returns the console
input/output, so it fundamentally returns "ok" for the ansible command
execution result.
However, the error within the smartcs_tty_command module can be controlled
and the ansible command set to "failed" by using the error_detect_on_module
option. The errors which can be controlled are limited to the following "errors
occurring when sending characters configured with the sendchar option in the
smartcs_tty_command module."

List of controllable
errors

Errors occurring when sending characters configured
with the sendchar option in the smartcs_tty_command
module
・Error:: Timeout.
・Error:: Not allowed.
・Error:: Session limit over.
・Error:: Connection closed.
・Error:: Matched “xxx”
・Error:: After error.

Examples of
uncontrollable errors

・smartcs_tty_command module option specification is
incorrect.

・The CLI executed on the managed node SmartCS
results in an error for some reason when executing the
smartcs_tty_command module.

・An error occurs due to the SSH session conducted
via Ansible

(Ex.) The command timeout period configured in

ansible_command_timeout has elapsed, etc.

The following table shows various combinations of the
error_detect_on_module option settings, whether there is an error after
sending the characters specified in sendchar/src, and ansible command

80

execution result.
error_detect_on_module
setting

Error after sending
the characters

Ansible command
execution result

ok Error occurred ok
Error did not occur ok

failed Error occurred failed
Error did not occur ok

81

1. Operation with the error_detect_on_module:ok setting

*The default value is error_detect_on_module:ok.

2. Operation with the error_detect_on_module:failed setting

82

(9) Output a customized return value

With the smartcs_tty_command, you can output stdout_lines_custom which
differentiates each transmitted character string by setting the custom_response
option.

・stdout_lines_custom

Prepare execute_command, response keys for each transmitted character
string and store the following values in each key.
execute_command: transmitted character string
response : output content after sending the sendchar and before receiving
the recvchar

Playbook with custom_response enables and the execution result
(stdout_lines_custom)

83

custom_response option setting

・custom_response_delete_nl

Delete only the line feeds from the stdout_lines_custom response content.

84

・custom_response_delete_lastline

Delete the last line from the stdout_lines_custom response content.

85

<Supplemental>

・Depending on the timing of the console sending and receiving, there is no
guarantee that input/output will be stored according to the expected format
even when this function is enabled.

Since the source data which generates stdout_lines_custom is stdout and
stdout_lines, specify this option after adjusting the timeout period of the
transmitted character string specified in the Playbook so that the Playbook
operates as intended.

86

8.1.6 Instructions and Directions for Use

This section provides instructions and directions for using the smartcs_tty_command
module.

The smartcs_tty_command module sends and receives the specified characters to
the console of the network devices connected to the SmartCS serial port. Pay
attention to the following precautions during use.

(1) Module policies

1. Initial console status

The smartcs_tty_command module does not manage or control the status
of the network devices console. Depending on the last executed command,
the status of the network devices console may be one of the following:
・Login prompt status
・General user group shell status
・Privileged user shell status
・Shell status for setting entry
 Create the Playbook by considering the status of the network devices
console.
Ex: always return the console to the login prompt status. Use the pre-check
function, etc.

2. Console input/output results

The smartcs_tty_command does not automatically determine whether an
error occurred in the execution result for the CLI command executed on the
console of the network devices.
If you wish to control the execution result (ok/failed) of the ansible
command according to the result of the CLI command executed on the
console, then use the following options.
error_recvchar_regex option
error_detect_on_module option

87

(2) Precautions when creating a Playbook

1. Extend the command timeout period (ansible_command_timeout)

When executing modules such as xxx_command or xxx_config via Ansible
with respect to a typical network device, it connects internally via SSH and
executes each command.
Since the smartcs_tty_command module processes the execution of each
command by serial communications via SmartCS, the timeout period
(Playbook task time) when executing commands on the managed node via
Ansible becomes longer.

Therefore, adjust the ansible_command_timeout option value according to
the transmitted character string specified in sendchar/src and the timeout
period within the Playbook.

*The default values for ansible_command_timeout are as follows.

Ansible2.7 system: 10 seconds
Ansible2.8 system: 30 seconds

Playbook example

- name: "get version and write"
 hosts: smartcs
 gather_facts: no

 tasks :
 - name : Configure NS-2250 ipaddress by Console
 seiko.smartcs.smartcs_tty_command :
 tty: 1-16
 recvchar :
 - '> '
 - '# '
 sendchar :
 - 'show version'
 - 'show ip'
 - 'write'
 - 'y'

 vars:
 - ansible_connection: ansible.netcommon.network_cli
 - ansible_network_os: seiko.smartcs.smartcs
 - ansible_user: smartcs-ansible
 - ansible_password: password
 - ansible_command_timeout: 600

88

8.2 seiko.smartcs.smartcs_command

8.2.1 Overview

Execute a status display command or maintenance command on a SmartCS
device and obtain the execution result.
This module does not support the execution of setting commands. Use a
smartcs_config module when configuring SmartCS.

89

8.2.2 Options

The following table lists the options for this module.

Option name Required Default Setting

range

Description

commands ○ Configure the list of commands to

execute on SmartCS.

interval 1 Configure the interval time (seconds)

to retry the command specified in the

commands option when the

conditions set in the wait_for option

are not satisfied.

match all any

all

Configure the comparison method

for the conditions set in the wait_for

option.

When this option is set to "all," it

retries the task execution when all of

the conditions set in the wait_for

option are satisfied.

When this option is set to "any," it

retries the task execution when any

of the conditions are satisfied.

retries 10 Configure the number of times to

retry the command execution

specified in the commands option

when the conditions set in the

wait_for option are not satisfied.

wait_for Configure the list of conditions for the

command execution result to satisfy.

The task execution fails when the

conditions are not satisfied even

after exceeding the number of retries

set in the retries option.

90

8.2.3 Playbook Example

The following shows a Playbook example for this module.

1. Execute the show version command in SmartCS

 - name: run show version on SmartCS
 seiko.smartcs.smartcs_command :
 commands: show version

2. Execute the show version command in SmartCS
and check if "Ver 2.0" is included in the characters

 - name: run show version and check to see if output contains 'Ver 2.0'
 seiko.smartcs.smartcs_command :
 commands: show version
 wait_for: result[0] contains 'Ver 2.0'

3. Execute multiple commands with show version and show tty in SmartCS

 - name: run multiple command on SmartCS
 seiko.smartcs.smartcs_command :
 commands:

- show version
- show tty

4. Execute multiple commands with show version and show tty in SmartCS
and check if the characters "Ver 2.0" and "1 9600" are included in
each result

 - name: run multiple commands and avaluate the output
 seiko.smartcs.smartcs_command :
 commands:
 - show version
 - show tty
 wait_for:
 - result[0] contains 'Ver 2.0'
 - result[1] contains '1 9600'

91

5. Executing the copy startup command in SmartCS

(interactive command support)

 - name: run copy startup command on SmartCS
 seiko.smartcs.smartcs_command :
 commands:
 - command: 'copy startup 2 to startup 4'
 prompt: 'Do you really want to copy external startup2 to external
startup4 \[y/n\] ?'
 answer: 'y'

92

8.2.4 Return Values

The following table lists the return values for this module.

Name Description Trigger Type

stdout_lines Output a list of command

execution results

separated by each line

feed character.

When the command

execution is successful

List

stdout Command execution result When the command

execution is successful

List

failed_conditions List of conditions not

satisfied during the

command execution

When the conditions are

not established

List

93

8.3 seiko.smartcs.smartcs_config

8.3.1 Overview

Execute a setting command in SmartCS.

94

8.3.2 Options

The following table lists the options for this module.

Option name Required Default Setting

range

Description

backup False boolean

value

Set the option to retrieve the backup

of the current running configuration.

If set to "true" (yes, y, true, etc.), the

backup file is saved in the backup

directory of the Playbook's save

directory. If the backup directory

does not exist, it creates the

directory.

If set to "false" (no, y, false, etc.), the

backup is not retrieved.

lines Configure the list of setting

commands to execute on SmartCS.

The target commands are those

displayed with the show config

running option.

match line line

none

Configure the comparison method

when comparing the configurations

set with the lines option with respect

to the configurations set in SmartCS.

When this option is set to "line," the

configurations set with the lines

option are compared for each

command with respect to the

configurations set in SmartCS, and

the setting command is executed if it

is not configured on the device.

If set to "none," the setting command

is executed without comparing the

configurations set in SmartCS with

the configuration commands set in

the lines option.

95

Option name Required Default Setting

range

Description

save_when nerver always

never

modified

changed

Set the configuration save method.

If this option is set to "always," the

write command is executed at all

times to save the configuration.

If set to "modified," the show config

running and show config startup

execution results are compared. If

there is a difference between the

results, the write command is

executed to save the configuration.

If set to "changed," the config line

specified in "lines" is not set in the

execution result for show config

running. If the setting is successfully

configured, the write command is

executed, and the configuration is

saved.

If set to "never," the configuration is

not saved.

src Configure the path of the file which

describes the setting target

configuration.

This option configures an absolute

file path or a relative path from the

Playbook save directory.

This option runs exclusively from the

lines option.

96

8.3.3 Playbook Example

The following shows a Playbook example for this module.

1. Set the label name and baud rate of TTY1 connected to SmartCS

 - name: configuration tty 1 settings
 seiko.smartcs.smartcs_config :
 lines:
 - set pord tty 1 label SWITCH_1
 - set tty 1 baud 38400

2. After setting the label name and baud rate of TTY20 connected to
SmartCS,
execute the write command if there is a difference with the config during
startup.

 - name: configuration tty 20 settings and write
 seiko.smartcs.smartcs_config :
 lines:
 - set pord tty 20 label ROUTER
 - set tty 20 baud 19200
 save_when: modified

3. After retrieving the backup of the current running configuration,
configure the SmartCS hostname. Execute the write command after the
configuration.

 - name: configuration host name and get backup file
 seiko.smartcs.smartcs_config :
 lines:
 - set hostname SmartCS_TEST1
 save_when: always
 backup: yes

97

4. Issue the CLI command described in the local configuration file
(config_file.txt) to SmartCS and execute the write command after
configuration.

※config_file.txt content
===================================
 1 #
 2 set hostname NS-2250-48_2
 3
===================================

※Playbook statement example

 - name: configuration by local file and write
 seiko.smartcs.smartcs_config :
 src: config_file.txt
 save_when: changed

98

8.3.4 Return Values

The following table lists the return values for this module.

Name Description Trigger Type

command List of set configurations

(same value as the

updates return value)

Always List

updates List of set configurations

(same value as the

command return value)

Always List

backup_path Backup file absolute path When the backup option is

set to "yes"

Characters

99

8.4 seiko.smartcs.smartcs_facts

8.4.1 Overview

Gather the device information from SmartCS.

8.4.2 Options

The following table lists the options for this module.

Option name Required Default Setting

range

Description

gather_subset !config

all

default

tty

config

Configure the classification of device

information to gather. The setting

range for this option is

all, default, tty, config

.

The following options are required,

because it transitions to device

administrator mode when set to "all"

or "config."

vars:

ansible_become: yes

ansible_become_method: enable

ansible_become_password: xxxxx

100

8.4.3 Playbook Example

The following shows a Playbook example for this module.

1. Retrieve all of the information which is retrievable with the smartcs_facts
module.

 - name: Collect all facts from the SmartCS
 seiko.smartcs.smartcs_facts :
 gather_subset: all

2. Retrieve the SmartCS running configuration and default information.

 - name: Collect only the config and default facts
 seiko.smartcs.smartcs_facts:
 gather_subset: config

3. Retrieve the SmartCS TTY information and default information.

 - name: Collect only the tty and default facts
 seiko.smartcs.smartcs_facts:
 gather_subset: tty

4. Retrieve information other than the SmartCS TTY information.

 - name: Do not collect tty facts
 seiko.smartcs.smartcs_facts:
 gather_subset: "!tty"

5. Retrieve the default information for the smartcs_facts module. (except
config)

 - name: Collect default facts
 seiko.smartcs.smartcs_facts:

101

8.4.4 Return Values

このモジュールの戻り値について下記に記載します。

Name Description Trigger Type
ansible_net_gather_subset List of device

information

classifications gathered

from SmartCS

Always Charact

ers

ansible_net_model SmartCS model

information (model

name displayed with the

show version

command)

Always Charact

ers

ansible_net_hostname SmartCS hostname

information (hostname

displayed with the show

ip command)

Always Charact

ers

ansible_net_version SmartCS version

information (version

number displayed with

the show version

command)

Always Charact

ers

ansible_net_config SmartCS running

configuration
When config is

enabled in the

gather_subset option

Charact

ers

ansible_net_tty SmartCS tty setting

information

(baud, bitchar, flow,

parity, stop, tty

information displayed

with the show tty

command and label

information displayed

with the show portd

command)

When tty is enabled

in the gather_subset

option

List

作成者
申し送り：原文通りに訳出しましたが、「SmartCSのバージョン名情報」の間違いかと思われます。その場合、「SmartCS version information」に変更してください。

102

ansible_net_serialnum SmartCS model

information (serial

number displayed with

the show version

command)

Always Charact

ers

103

Name Description Trigger Type

ansible_net_bond1 SmartCS interface

setting information (show

ipinterface bond1

command)

Always Hash

ansible_net_eth1 SmartCS interface

setting information (show

ipinterface eth1

command)

Always Hash

ansible_net_eth2 SmartCS interface

setting information (show

ipinterface eth2

command)

Always Hash

104

9 Limitations

9.1 Administering the SmartCS series console with “smartcs_tty_command”

When using the “SmartCS modules for Ansible” to set the SmartCS series (NS-2250,
NS-2240) as the network devices and sending and receiving characters to the
console with the “smartcs_tty_command”, the ansible command will exit if a CLI error
(no such command, too many parameters) occurs after sending the characters
configured with sendchar/src in the Playbook,.

When using the “smartcs_tty_command” to execute setting commands and status
display commands on the SmartCS series, make sure that CLI errors do not occur for
the characters configured with sendchar/src.

105

9.2 Gathering device information with gather_facts

Starting from ansible2.9, the device information can be gathered even without
using the smartcs_facts module. The details are output to the ansible_facts
variable by specifying "gather_facts: yes" in the Playbook. (Same information as
the "gather_subset: all" specification)

Because this makes it possible to obtain the SmartCS version information without
using the smartcs_facts module, it is now easier to describe a Playbook compared
to before.

*This function is not a SmartCS module function enhancement but a function
provided by an Ansible improved through Ansible2.9.

Playbook example

- name: "smartcs_command with fact "
 hosts: smartcs
 gather_facts: yes

 tasks :
 - name : "run show portd tty"
 seiko.smartcs.smartcs_command :
 commands:
 - show portd tty

 - name : "smartcs version"
 debug :
 var: ansible_facts.net_version

 vars:
 - ansible_connection: ansible.netcommon.network_cli
 - ansible_network_os: seiko.smartcs.smartcs

106

When using this function in “SmartCS modules for Ansible” v1.3.0 and above, the
information may be handled with either (1) or (2) below.

(1) Execute smartcs_facts to obtain the information.

Execute smartcs_facts when creating a Playbook to obtain and handle the
SmartCS device information. When "gather_facts: yes" is specified, the return
value when "all" is specified in the gather_subset option of smartcs_facts is
stored in the ansible_facts variable.

(2) Specify the FACTS_MODULES option.
The SmartCS facts information can be gathered when specifying "gather_facts:
yes" by specifying the FACTS_MODULES option.
https://docs.ansible.com/ansible/latest/reference_appendices/config.html#facts
-modules

The following specification is used when specifying variables in the vars
section in the Playbook.

vars:
 - ansible_facts_modules: seiko.smartcs.smartcs_facts

https://docs.ansible.com/ansible/latest/reference_appendices/config.html%23facts-modules
https://docs.ansible.com/ansible/latest/reference_appendices/config.html%23facts-modules

107

10 Troubleshooting

This chapter explains how to handle errors that occur when using SmartCS modules
for Ansible and executing a Playbook.
Each section lists the error output and a possible troubleshooting method. The
troubleshooting method will not necessarily be able to resolve the error, but hopefully
the information will be helpful when troubleshooting.

10.1 “Unable to connect to port 22 on x.x.x.x”

fatal: [x.x.x.x]: FAILED! => {
 "msg": "[Errno None] Unable to connect to port 22 on x.x.x.x"
}

Unable to connect to the target SmartCS. Check the IP address and hostname of
the SmartCS registered on the management host as well as the network between
the management host and the SmartCS.
In addition, the SSH server on the SmartCS may not be enabled. Execute the
following command to enable the SSH server on the SmartCS.

(0)NS-2250# enable sshd

10.2 “timed out”

fatal: [x.x.x.x]: FAILED! => {
 "msg": "timed out"
}

Unable to connect to the target SmartCS, because a timeout error occurred while
trying. Check the network between the management host and the SmartCS.
In addition, the SmartCS filter function may be discarding the packets. Execute the
following commands to check if the packets from the management host are
configured to be properly delivered to the SmartCS and add any settings as
needed.

(0)NS-2250# show ipfilter input
(0)NS-2250# create ipfilter input accept …

108

10.3 “Error reading SSH protocol banner”

fatal: [x.x.x.x]: FAILED! => {
 "msg": "Error reading SSH protocol banner[Errno 104] Connection reset by peer"
}

The following are possible causes. Check each of the SmartCS settings.
(1) Unable to connect due to an error, because access permission is not

configured on the target SmartCS. Check the access permission setting on the
SmartCS and add any settings as needed.

(0)NS-2250# show allowhost
(0)NS-2250# create allowhost …

(2) The target SmartCS serial port may have already reached the maximum

number of connections for RW sessions. Check the portd settings and change
any settings as needed.

(0)NS-2250# show portd tty
(0)NS-2250# set portd tty x limit rw 2 ro 3

10.4 “The authenticity of host ‘x.x.x.x’ can’t be established.”

fatal: [x.x.x.x]: FAILED! => {
 "msg": "paramiko: The authenticity of host 'x.x.x.x' can't be established.\nThe
ecdsa-sha2-nistp521 key fingerprint is b'xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx'."
}

The SmartCS SSH host key is not registered on the management host PC. Create
an SSH connection and register the host key, or remove the comment out of
"host_key_checking = False" in ansible.cfg and confirm that the check for the SSH
host key is not executed.
For more details, refer to "3 Preparations."

10.5 ”Authentication failed.”

fatal: [x.x.x.x]: FAILED! => {
 "msg": "Invalid/incorrect username/password. Authentication failed."
}

An authentication error is occurring when logging into SmartCS from the

109

management host running Ansible. Check the user name and password of the
SmartCS login user.

10.6 “Bad authentication type”

fatal: [x.x.x.x]: FAILED! => {
 "msg": "Invalid/incorrect username/password. ('Bad authentication type',
['publickey']) (allowed_types=['publickey'])"

An authentication error is occurring due to the wrong user authentication method
when logging into SmartCS from the management host running Ansible. Match the
user authentication method of the SmartCS SSH server to the management host.

(0)NS-2250# set sshd auth basic

10.7 “Unable to automatically determine host network os.”

fatal: [x.x.x.x]: FAILED! => {
 "msg": "Unable to automatically determine host network os. Please manually
configure ansible_network_os value for this host"
}

"smartcs" is not configured in the network OS option to connect from the
management host to SmartCS. Configure "seiko.smartcs.smartcs" in the
Playbook's "ansible_network_os" setting.
For more details, refer to "4 Creating a Playbook Compatible with Ansible
Collections".

10.8 “unable to elevate privilege to enable mode”

fatal: [x.x.x.x]: FAILED! => {
 "msg": "unable to elevate privilege to enable mode, at prompt [b'\\n(2)NS-2250> ']
with error: su\r\nPassword: \r\nincorrect password\r\n(2)NS-2250> "
}

Failed to transit to the privileged user after logging into SmartCS. Check the
password specified in the Playbook's "ansible_become_password".
For more details, refer to "4 Creating a Playbook Compatible with Ansible
Collections".

110

10.9 “command timeout triggered, timeout value is X secs.”

 },
 "msg": "command timeout triggered, timeout value is 10 secs.\nSee the timeout
setting options in the Network Debug and Troubleshooting Guide."
}

The command failed to execute since timeout occurred by some causes when
login to the SmartCS or executing the specified command. Regarding the causes,
refer to the following documents about timeout.

Various settings regarding the Ansible timeout of the control node (ansible.cfg)
https://docs.ansible.com/ansible/latest/reference_appendices/config.html

Each setting of the network_cli connection plugin
https://docs.ansible.com/ansible/latest/collections/ansible/netcommon/network_cli
_connection.html

Timeout issues in Network Debug and Troubleshooting Guide
https://docs.ansible.com/ansible/latest/network/user_guide/network_debug_troubl
eshooting.html#timeout-issues

10.10 “timeout value X seconds reached while trying to send～”

 },
 "msg": "timeout value 10 seconds reached while trying to send command:
b'ttysendwaitset tty 1 timeout 15 nl cr string \"show version\"'"
}

A timeout occurred during the execution of a command specified in Playbook,
which resulted in a command execution error.

Refer to the troubleshooting method listed in section 10.9 "command timeout
triggered, timeout value is X secs." and the options for each module listed in
"Chapter 8 Modules."

In case using the smartcs_tty_command module, please also check the following
section.

https://docs.ansible.com/ansible/latest/reference_appendices/config.html
https://docs.ansible.com/ansible/latest/collections/ansible/netcommon/network_cli_connection.html
https://docs.ansible.com/ansible/latest/collections/ansible/netcommon/network_cli_connection.html
https://docs.ansible.com/ansible/latest/network/user_guide/network_debug_troubleshooting.html#timeout-issues
https://docs.ansible.com/ansible/latest/network/user_guide/network_debug_troubleshooting.html#timeout-issues

111

- "8.1.2 Options" : The cmd_timeout option value setting
- "8.1.5 Explanations" : The operation of each explained option
- "8.1.6 Instructions and Directions for Use" : (2)Precautions when creating a
Playbook

112

10.11 "Ignoring timeout(10) for smartcs_facts"

TASK [Gathering Facts] **************************************
[WARNING]: Ignoring timeout(10) for smartcs_facts
ok: [xxx.xxx.xxx.xxx]

Starting from Ansible2.9, the network module facts gathering is carried out through
gather_facts, and in the case of SmartCS, the smartcs_facts module operates
internally.
Therefore, it operates on the timeout value of the connection plugin (network_cli)
without referencing gather_timeout (DEFAULT_GATHER_TIMEOUT), which is the
timeout value for facts information gathering configured in ansible.cfg, etc.

This warning covers such details and is output by specifying "gather_facts: yes"
when using each module for operating SmartCS in Ansible2.9, but there is nothing
wrong with the operation or the Playbook.

113

11 Appendix A. Building the Ansible Environment

11.1 Building the Ansible environment with venv

When building the Ansible environment, it can be built without affecting the Python
running on the control node by using the Python virtualization technology venv.

The following explains the procedure to build the Ansible environment by using venv
and install the SmartCS modules for Ansible in the venv environment.

<Build environment example>
・CentOS7 (python3 package added with yum)

(1) Build the virtual environment with venv
Build the virtual environment with venv in the python3 environment.

$ python3 –m venv smartcs-ansible
$ source smartcs-ansible/bin/activate
(smartcs-ansible)$
$

$ sudo yum install python3

114

(2) Install Ansible and the required packages

Install Ansible and the required packages in the venv environment.
Refer to the table in "Chapter 1 Introduction 1.3 Operating environment" to
install the Ansible version according to the SmartCS modules for Ansible
version.

In v1.3.0 and above, Ansible v2.10 and above version which supports the
Ansible Collections format must be installed. 2 types of package "ansible" and
"ansible-base" are provided in Ansible v2.10 and above, but SmartCS modules
for Ansible will run with either package.

The following is an operation example for building "ansible-base 2.10.6."

(smartcs-ansible)$ pip3 install ansible-base==2.10.6
(smartcs-ansible)$ pip3 install paramiko
(smartcs-ansible)$

*Supplemental (1)

Depending on the execution environment, the following type of warning may
be output to indicate that the pip command must be upgraded.

As stated in the warning text, upgrade the pip command to handle this
message.

You should consider upgrading via the 'pip install --upgrade pip' command. $
$ pip install --upgrade pip

*Supplemental (2)

When executing the pip command in a Proxy environment,
add the Proxy option to the pip command as shown below.

(smartcs-ansible)$ pip3 install ansible-base==2.10.6 --proxy x.x.x.x:xxxx
(smartcs-ansible)$ pip3 install paramiko --proxy x.x.x.x:xxxx
(smartcs-ansible)$

115

(3) Checking of the installed Ansible

Execute ansible --version to check the Ansible environment that was built on
venv.

(smartcs-ansible)$ ansible --version

Check that the version of the installed Ansible is displayed.

(4) Installing the SmartCS modules for Ansible
After the Ansible environment is built, install SmartCS modules for Ansible so
that the Ansible module for SmartCS will become available to use.
Because the operation details may differ depending on the version to install,
refer to the following table to execute the installation.

<Provided format and install procedure>

SmartCS modules

for Ansible

Provided format Install procedure

v1.0 SEIKO Solutions original

package

"Chapter 12 Appendix B. v1.0 to

v1.2 Operation" v1.1

v1.1.1

v1.2

v1.3.0 and above Ansible Collections format "Chapter 2 Installation"

116

11.2 Preparation for ansible.cfg

When using venv to build the Ansible environment, the ansible.cfg file required to run
Ansible is not automatically generated, so the file must be prepared by yourself.
Ansible.cfg can be obtained from the GitHub Ansible repository. Download and use the
file according to the Ansible version which was built.

(Ex: ansible 2.10.6 (ansible-base 2.10.6) repository information)
https://github.com/ansible/ansible/blob/v2.10.6/examples/ansible.cfg

The following is an operation example which obtains ansible.cfg from GitHub.

The setting details described in the ansible.cfg file have a priority which depends on the
location in the file, so place them according to the Ansible execution environment.

https://docs.ansible.com/ansible/latest/reference_appendices/general_precedence.htm
l#id2

$ wget https://raw.githubusercontent.com/ansible/ansible/v2.10.6/examples/ansible.cfg
$

https://github.com/ansible/ansible/blob/v2.10.6/examples/ansible.cfg
https://docs.ansible.com/ansible/latest/reference_appendices/general_precedence.html%23id2
https://docs.ansible.com/ansible/latest/reference_appendices/general_precedence.html%23id2

117

12 Appendix B. v1.0 to v1.2 Operation

12.1 Overview of the v1.0 to v1.2 operation

Seiko Solutions had been providing original package when installing “SmartCS module
for Ansible” v1.0 to v1.2.

SmartCS modules

for Ansible

Control node environment Managed node environment

SmartCS software ver.

ansible Python NS-2250

Series

NS-2240

series

v1.0 2.7.7

2.7 and

above

3.6 and

above

v2.0 and

above

Not supported

v1.1

v1.1.1

2.8.4 v2.1 and

above

v1.2 2.9.15

3.6.8 v2.1 and

above
*Provided as a SEIKO Solutions original package (modules, installer).

This section explains how to install, uninstall, upgrade, and other ways to use “SmartCS
modules for Ansible” v1.0 to v1.2.

12.2 Pre-installation Check

Check that Ansible is installed. If Ansible is not installed, it’s possible to install it by
“yum” or “pip” command, etc. when using CentOS and other operating systems.
To build the Ansible environment, refer to "Chapter 11 Appendix A. Building the Ansible
Environment."

118

12.3 Installation

Install “SmartCS modules for Ansible” with the following procedure.
Perform the operations as the privileged user of the Ansible management host PC as
needed.
When building Ansible in a venv environment, execute the following steps after
transitioning to the venv environment which was built to install the modules.

*Some “SmartCS modules for Ansible” file names may differ depending on the version.

<Version 1.0>
"smartcs_modules_for_ansible.tar.gz"... does not include its version name.
<Version 1.1 and above>
"smartcs_modules_for_ansible_vXXX.tar.gz"... includes its version name.
(The version name of version 1.1 is v110.)

(1) Unzipping “SmartCS modules for Ansible”

Place the “smartcs_modules_for_ansible_vXXX.tar.gz” file included within the
downloaded file in any directory.

$ ls
smartcs_modules_for_ansible_vXXX.tar.gz
$
$ tar zxvf smartcs_modules_for_ansible_vXXX.tar.gz
smartcs_modules_for_ansible_vXXX/
smartcs_modules_for_ansible_vXXX/readme
smartcs_modules_for_ansible_vXXX/install_smartcs_modules.sh
smartcs_modules_for_ansible_vXXX/COPYING
smartcs_modules_for_ansible_vXXX/smartcs_modules.tar.gz
$

119

(2) Installing “SmartCS modules for Ansible”

Go to the “smartcs_modules_for_ansible_vXXX” directory created by
unzipping and execute “install_smartcs_modules.sh”.
“SmartCS modules for Ansible” are installed below the Python on the
management host PC where Ansible is installed.
Only the prompt appears when the modules are successfully installed.

$ ls
smartcs_modules_for_ansible_vXXX
smartcs_modules_for_ansible_vXXX.tar.gz
$
$ cd smartcs_modules_for_ansible_vXXX/
$
$ ls
COPYING install_smartcs_modules.sh readme smartcs_modules.tar.gz
$
$ sudo ./install_smartcs_modules.sh install
$

(3) Installation check

Check the “SmartCS modules for Ansible” version which was installed.

$./install_smartcs_modules.sh version
RUNNING version : 1.x (rxxxx).
$

120

12.4 Upgrading

To upgrade “SmartCS modules for Ansible”, follow the steps below.
If necessary, perform the operation as a privileged user on the Ansible
management host PC.

(1) Uninstall the installed ”SmartCS modules for Ansible”

Refer to "12.5 Uninstalling" for the procedure to uninstall the modules.

(2) Upgrading Ansible
Check the version of Ansible which is supported by the new“SmartCS modules
for Ansible” and perform anupgrade. For the supported versions, refer to
section "1.3 Operating Environment."

(3) Installing the new “SmartCS modules for Ansible”
Refer to "12.3 Installation" for the installation procedure.
After installing the new version, use the same procedure described in "12.3 (3)
Installation check" and execute the "./install_smartcs_modules.sh version"
command to check the version namer.

12.5 Uninstalling

Uninstall the “SmartCS modules for Ansible” with the following procedure.
If necessary, perform the operation as a privileged user on the Ansible
management host PC.

(1) Check the version

Check the installed version of “SmartCS modules for Ansible”.

$./install_smartcs_modules.sh version
RUNNING version : 1.x (rxxxx).
$

121

(2) Uninstalling “SmartCS modules for Ansible”

Go to the “smartcs_modules_for_ansible_vXXX” directory created by
unzipping of the “smartcs_modules_for_ansible_vXXX.tar.gz” file which
includes the confirmed version name and execute
“install_smartcs_modules.sh”.

$ ls
smartcs_modules_for_ansible_vXXX
smartcs_modules_for_ansible_vXXX.tar.gz
$
$ cd smartcs_modules_for_ansible_vXXX/
$
$ ls
COPYING install_smartcs_modules.sh readme smartcs_modules.tar.gz
$
$ sudo ./install_smartcs_modules.sh uninstall
$

When upgrading Ansible, first uninstall the “SmartCS modules for Ansible” and
then install the modules once again after upgrading Ansible.

122

12.6 Command Reference (install_smartcs_modules)

The following explains the installer command (install_smartcs_module) included
with “SmartCS modules for Ansible” v1.0 to v1.2.

Perform the operations as a privileged user of the control node as needed.

Function Install and uninstall the “SmartCS Module for Ansible” and display
the version information.

Format install_smartcs_modules.sh { install [Ansible_Root] | uninstall
[Ansible_Root]| version [Ansible_Root]| package }

Parameters
install [Ansible_Root]
 Install the “SmartCS modules for Ansible”.
 If Ansible_Root is not specified, the modules are installed in the
 "ansible python module location" displayed when the ansible
 --version command is executed.
 If Ansible_Root is specified, the files are extracted to the
 specified path.

uninstall [Ansible_Root]
 Uninstall the “SmartCS modules for Ansible”.
 If Ansible_Root is not specified, the modules are uninstalled from
 the "ansible python module location" displayed when the ansible
 --version command is executed.
 If Ansible_Root is specified, the files are deleted from the
 specified path.

version [Ansible_Root]
 Display the version number of the installed “SmartCS modules for
 Ansible”.
 If Ansible_Root is not specified, it displays the version number
 which is installed in the "ansible python module location" shown
 when the ansible --version command is executed.
 If Ansible_Root is specified, it displays the version number
 extracted to the specified path.

package
 Display the version number of the file located in the execution
 path of “install_smartcs_modules.sh”.

123

Usage example Installing “SmartCS modules for Ansible”

$ sudo ./install_smartcs_modules.sh install
$

 Displaying the version information of the installed “SmartCS modules

for Ansible”.

$./install_smartcs_modules.sh version
RUNNING version : 1.x (rxxxx).
$

124

13 Appendix C. Handling of Various Characters in Playbooks

13.1 Specifiable Character Types

This section explains the types of characters which can be configured in the
various modules included in “SmartCS modules for Ansible”.

About the table descriptive content

・hex ：indicates a hexadecimal number.

・character ：indicates a character which can be specified.

・text ：indicates a setting method without single or double quotations

when configuring an option value in a Playbook.
 (Ex.)

sendchar :
- show version

・single quotation ：indicates a setting method with single quotations when

specifying an option value in a Playbook.
 (Ex.)

sendchar :
- 'show version'

・double quotation：indicates a setting method with double quotations when

specifying an option value in a Playbook.
 (Ex.)

sendchar :
- "show version"

125

The following types of characters can be configured in the options used to send
and receive characters with “smartcs_tty_command”.
〇 : transmittable
x : not transmittable
Other : as indicated in the table

hex character sendchar recvchar
recvchar_regex
error_recvchar_regex

text single
quotation

double
quotation

text single
quotation

double
quotation

0x20 SPACE × 〇 〇 × 〇 〇
0x21 ! × 〇 〇 × 〇 〇
0x22 “ × 〇 \(0x5c)

assignment
× 〇 \(0x5c)

assignment
0x23 # × 〇 〇 × 〇 〇
0x24 $ 〇 〇 〇 〇 〇 〇
0x25 % × 〇 〇 × 〇 〇
0x26 & × 〇 〇 × 〇 〇
0x27 ‘ × ‘ (0x27)

assignment
〇 × ‘ (0x27)

assignment
〇

0x28 (〇 〇 〇 〇 〇 〇
0x29) 〇 〇 〇 〇 〇 〇
0x2a * × 〇 〇 × 〇 〇
0x2b + 〇 〇 〇 〇 〇 〇
0x2c , × 〇 〇 × 〇 〇

0x2d - × 〇 〇 × 〇 〇
0x2e . 〇 〇 〇 〇 〇 〇
0x2f / 〇 〇 〇 〇 〇 〇
0x30 0 〇 〇 〇 〇 〇 〇
0x31 1 〇 〇 〇 〇 〇 〇
0x32 2 〇 〇 〇 〇 〇 〇
0x33 3 〇 〇 〇 〇 〇 〇
0x34 4 〇 〇 〇 〇 〇 〇
0x35 5 〇 〇 〇 〇 〇 〇
0x36 6 〇 〇 〇 〇 〇 〇

126

hex character sendchar recvchar
recvchar_regex
error_recvchar_regex

text single
quotation

double
quotation

text single
quotation

double
quotation

0x37 7 〇 〇 〇 〇 〇 〇
0x38 8 〇 〇 〇 〇 〇 〇
0x39 9 〇 〇 〇 〇 〇 〇
0x3a : × 〇 〇 × 〇 〇
0x3b ; 〇 〇 〇 〇 〇 〇
0x3c < 〇 〇 〇 〇 〇 〇
0x3d = × 〇 〇 × 〇 〇
0x3e > × 〇 〇 〇 〇 〇
0x3f ? × 〇 〇 × 〇 〇
0x40 @ × 〇 〇 × 〇 〇
0x41 A 〇 〇 〇 〇 〇 〇
0x42 B 〇 〇 〇 〇 〇 〇
0x43 C 〇 〇 〇 〇 〇 〇
0x44 D 〇 〇 〇 〇 〇 〇
0x45 E 〇 〇 〇 〇 〇 〇
0x46 F 〇 〇 〇 〇 〇 〇
0x47 G 〇 〇 〇 〇 〇 〇
0x48 G 〇 〇 〇 〇 〇 〇
0x49 I 〇 〇 〇 〇 〇 〇
0x4a J 〇 〇 〇 〇 〇 〇
0x4b K 〇 〇 〇 〇 〇 〇
0x4c L 〇 〇 〇 〇 〇 〇
0x4d M 〇 〇 〇 〇 〇 〇
0x4e N 〇 〇 〇 〇 〇 〇
0x4f O 〇 〇 〇 〇 〇 〇
0x50 P 〇 〇 〇 〇 〇 〇
0x51 Q 〇 〇 〇 〇 〇 〇
0x52 R 〇 〇 〇 〇 〇 〇
0x53 S 〇 〇 〇 〇 〇 〇
0x54 T 〇 〇 〇 〇 〇 〇

127

hex character sendchar recvchar

recvchar_regex
error_recvchar_regex

text single
quotation

double
quotation

text single
quotation

double
quotation

0x55 U 〇 〇 〇 〇 〇 〇
0x56 V 〇 〇 〇 〇 〇 〇
0x57 W 〇 〇 〇 〇 〇 〇
0x58 X 〇 〇 〇 〇 〇 〇
0x59 Y 〇 〇 〇 〇 〇 〇
0x5a Z 〇 〇 〇 〇 〇 〇
0x5b [× 〇 〇 × 〇 〇
0x5c \ 〇 〇 \(0x5c)

assignment
〇 〇 \(0x5c)

assignment
0x5d] × 〇 〇 × 〇 〇
0x5e ^ 〇 〇 〇 〇 〇 〇
0x5f _ 〇 〇 〇 〇 〇 〇
0x60 ` × 〇 〇 × 〇 〇
0x61 a 〇 〇 〇 〇 〇 〇
0x62 b 〇 〇 〇 〇 〇 〇
0x63 c 〇 〇 〇 〇 〇 〇
0x64 d 〇 〇 〇 〇 〇 〇
0x65 e 〇 〇 〇 〇 〇 〇
0x66 f 〇 〇 〇 〇 〇 〇
0x67 g 〇 〇 〇 〇 〇 〇
0x68 h 〇 〇 〇 〇 〇 〇
0x69 i 〇 〇 〇 〇 〇 〇
0x6a j 〇 〇 〇 〇 〇 〇
0x6b k 〇 〇 〇 〇 〇 〇
0x6c l 〇 〇 〇 〇 〇 〇
0x6d m 〇 〇 〇 〇 〇 〇
0x6e n 〇 〇 〇 〇 〇 〇
0x6f o 〇 〇 〇 〇 〇 〇
0x70 p 〇 〇 〇 〇 〇 〇
0x71 q 〇 〇 〇 〇 〇 〇

128

hex character sendchar recvchar

recvchar_regex
error_recvchar_regex

text single
quotation

double
quotation

text single
quotation

double
quotation

0x72 r 〇 〇 〇 〇 〇 〇
0x73 s 〇 〇 〇 〇 〇 〇
0x74 t 〇 〇 〇 〇 〇 〇
0x75 u 〇 〇 〇 〇 〇 〇
0x76 u 〇 〇 〇 〇 〇 〇
0x77 w 〇 〇 〇 〇 〇 〇
0x78 x 〇 〇 〇 〇 〇 〇
0x79 y 〇 〇 〇 〇 〇 〇
0x7a z 〇 〇 〇 〇 〇 〇
0x7b { × 〇 〇 × 〇 〇
0x7c | × 〇 〇 × 〇 〇
0x7d } × 〇 〇 × 〇 〇
0x7e ~ × 〇 〇 × 〇 〇

When specifying double quotations (0x22) and backslash (0x5c) with recvchar,
recvchar_regex, and error_recvchar_regex options, they can be configured using
single quotations, but the following settings are required in a Playbook when using
double quotations.

 seiko.smartcs.smartcs_tty_command:
 tty: 1
 cmd_timeout : 10
 recvchar_regex :
 - “(^|\\n|\\r)SmartCS> ” <- example of setting the initial characters to "SmartCS> "

Since double quotations and backslashes are frequently used characters in regular
expressions, it is recommended to use single quotations when configuring regular
expressions.

129

13.2 Sending Various Types of Characters

As shown below, in some cases you may want to configure specific characters and
commands or regular expressions in the configurable options of the various
modules included in “SmartCS modules for Ansible”.

・Configuring any command (command characters that you wish to send)

- “smartcs_command” commands option
- “smartcs_config” lines option
- “smartcs_tty_command” sendchar and recvchar options

・Configuring regular expressions
- “smartcs_tty_command” recvchar_regex and error_recvchar_regex options

Examples and precautions when configuring these options are described below.

(1) Including a single quotation or comma in the option setting value

Ex. 1: configuring characters which include a single quotation

Version '1.0 (2019/xx/yy)'

When writing the characters above in a Playbook, enclose the characters
within double quotation marks.

 seiko.smartcs.smartcs_tty_command:
 tty: 1
 recvchar :
 - "Version '1.0 (2019/xx/yy)'"
 sendchar :
 - 'show version'

Ex. 2: configuring characters which include a comma

set tty 1,3,16 baud 115200

When writing the characters above in a Playbook, enclose the characters
within double quotation marks.

 seiko.smartcs.smartcs_config:
 lines :
 - "set tty 1,3,16 baud 115200"

130

(2) Including a double quotation or backslash (\) in the option setting value

Ex. 1: configuring characters which include a double quotation

set portd tty 1 label "SWITCH A"

When writing the setting command above in a Playbook, enclose the command
within single quotation marks.

 seiko.smartcs.smartcs_config:
 lines:
 - 'set portd tty 1 label "SWITCH A"'

Ex. 2: configuring characters which include a backslash

(\r|\n|^)SmartCS

When writing the setting command above in a Playbook, enclose the regular
expression within single quotation marks.

 seiko.smartcs.smartcs_tty_command:
 tty: 10
 recvchar_regex :
 - '(\r|\n|^)SmartCS'
 sendchar :
 - 'show version'

131

(3) Including both single quotation and double quotation marks in option setting

value

Ex. 1: configuring characters which include single quotation and double
quotation marks

set logd tty 10 mail 1 subject "mail test 'A'"

When writing the setting command above in a Playbook, enclose the entire
setting value within double quotation marks and escape the double quotation
marks that you wish to send with backslashes.

 seiko.smartcs.smartcs_config:
 lines:
 - "set logd tty 10 mail 1 subject \"mail test 'A' \""

132

13.3 Configuring Regular Expressions

Regular expressions can be configured within the following options when using the
“smartcs_tty_command” module.
・recvchar_regex
・error_recvchar_regex
・initial_prompt
The following table lists the regular expressions which can be configured with
these options.

(1) Expressions which match a single character

. Match any single character.
[…] (... is any character) Match any specified single character.
[^…] (... is any character) Match any unspecified single character.
\k (k is a non-alphanumeric character) Match as a character.
\d Match a single numerical character from 0 to 9.
\D Match a single character except for \d.
\s Match either blank character.
\S Match a single character except for \s.
\w Match a single alphanumeric or "_" (underscore) character.
\W Match a single character except for \w.
\r Match CR (0x0d).
\n Match LF (0x0a).

(2) Add the following to express repetitive matching
* Repetitive matching of 0 instances or more.
+ Repetitive matching of 1 instance or more.
? 0 or 1 match.
{m} (m is an integer of 0 or more) Repetitive matching of exactly m

times.
{m,} (m is an integer of 0 or more) Repetitive matching of m times or

more.
{m,n} (m, n are integers of 0 or more) Repetitive matching of m to n

times.

133

(3) Other expressions

(re) (re is any regular expression) Match re.
| Match either expression separated by this symbol.
[0-9] Match a single numerical character from 0 to 9.
[a-z] Match a single alphabetic character from a to z.
[A-Z] Match a single alphabetic character from A to Z.

(4) Combined expressions
(^|\n|\r) Match the beginning of the line.

(5) Examples of writing regular expressions
Use such expressions when you wish to wait for multiple types of prompts
composed of alphabetic characters (uppercase/lowercase), numbers, symbols
(_ (underscore), . (dot), and - (hyphen)).

<Matching characters>
Ex: SmartCS_01>, SmartCS_01(config)#, SmartCS_01(config-if)#,
SmartCS_01(config-line)#

recvchar_regex :

- “(^|\\n|\\r)[a-zA-Z0-9_.-]*(\\(config)*(-if|-line)*\\)*(>|#)”

134

13.4 Execution Result Output Characters

The following specific characters are output in the converted state shown in the
table in Ansible execution results (stdout, stdout_lines).

hex character stdout_lines stdout

0x09 HT(\t) \t \t

0X0a LF(\n) Double line feed \n\n

0x0c FF(\f) \f \f

0x0d CR(\r) Single line feed \n

0x22 “ \” \”

0x5c \ \\ \\

135

14 Appendix D. Tips for using the “SmartCS modules for Ansible”

14.1 How to Write the File Specifying the src Option

When specifying the transmitted character string using sendchar option, there are
characters which must be enclosed within single or double quotation marks. When
using src option to specify the transmitted character string in an external file, it
must be written without quotation marks.

Ex 1: Specifying the transmitted character string using sendchar option

sendchar :
- 'somebody'
- '__NL__'
- 'su'
- '__NL__'
- 'set user testusr password'
- ' !pass'
- ' !pass'
- 'exit'
- 'exit'

Ex 2: Using src option to specify the transmitted character string in an external file

somebody
__NL__
su
__NL__
set user testusr password
!pass
!pass
exit
exit

136

14.2 Sending Characters Simultaneously to Multiple Network devices

Change the forks value in /etc/ansible/ansible.cfg so that it takes into consideration
the number of network devices that you wish to simultaneously send the
characters to.
For example, to send the characters simultaneously to 48 network devices
connected to the serial ports of SmartCS, the forks value must be set to 48 or
higher where the default value is set to 5.

137

15 Licenses

15.1 Third-party Software Licenses

This chapter explains the third party software licenses used in this software.

The source code for the SmartCS modules for Ansible is available on GitHub.

https://github.com/ssol-smartcs/ansible-collections

Customers who wish to request a copy of the source code modified by Seiko Solutions

should contact us.

GPLv3 License

GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>

 Everyone is permitted to copy and distribute verbatim copies

 of this license document, but changing it is not allowed.

 Preamble

 The GNU General Public License is a free, copyleft license for

software and other kinds of works.

 The licenses for most software and other practical works are designed

to take away your freedom to share and change the works. By contrast,

the GNU General Public License is intended to guarantee your freedom to

share and change all versions of a program--to make sure it remains free

software for all its users. We, the Free Software Foundation, use the

GNU General Public License for most of our software; it applies also to

any other work released this way by its authors. You can apply it to

your programs, too.

 When we speak of free software, we are referring to freedom, not

https://github.com/ssol-smartcs/ansible-collections

138

price. Our General Public Licenses are designed to make sure that you

have the freedom to distribute copies of free software (and charge for

them if you wish), that you receive source code or can get it if you

want it, that you can change the software or use pieces of it in new

free programs, and that you know you can do these things.

 To protect your rights, we need to prevent others from denying you

these rights or asking you to surrender the rights. Therefore, you have

certain responsibilities if you distribute copies of the software, or if

you modify it: responsibilities to respect the freedom of others.

 For example, if you distribute copies of such a program, whether

gratis or for a fee, you must pass on to the recipients the same

freedoms that you received. You must make sure that they, too, receive

or can get the source code. And you must show them these terms so they

know their rights.

 Developers that use the GNU GPL protect your rights with two steps:

(1) assert copyright on the software, and (2) offer you this License

giving you legal permission to copy, distribute and/or modify it.

 For the developers' and authors' protection, the GPL clearly explains

that there is no warranty for this free software. For both users' and

authors' sake, the GPL requires that modified versions be marked as

changed, so that their problems will not be attributed erroneously to

authors of previous versions.

 Some devices are designed to deny users access to install or run

modified versions of the software inside them, although the manufacturer

can do so. This is fundamentally incompatible with the aim of

protecting users' freedom to change the software. The systematic

pattern of such abuse occurs in the area of products for individuals to

use, which is precisely where it is most unacceptable. Therefore, we

have designed this version of the GPL to prohibit the practice for those

products. If such problems arise substantially in other domains, we

stand ready to extend this provision to those domains in future versions

of the GPL, as needed to protect the freedom of users.

139

 Finally, every program is threatened constantly by software patents.

States should not allow patents to restrict development and use of

software on general-purpose computers, but in those that do, we wish to

avoid the special danger that patents applied to a free program could

make it effectively proprietary. To prevent this, the GPL assures that

patents cannot be used to render the program non-free.

 The precise terms and conditions for copying, distribution and

modification follow.

 TERMS AND CONDITIONS

 0. Definitions.

 "This License" refers to version 3 of the GNU General Public License.

 "Copyright" also means copyright-like laws that apply to other kinds of

works, such as semiconductor masks.

 "The Program" refers to any copyrightable work licensed under this

License. Each licensee is addressed as "you". "Licensees" and

"recipients" may be individuals or organizations.

 To "modify" a work means to copy from or adapt all or part of the work

in a fashion requiring copyright permission, other than the making of an

exact copy. The resulting work is called a "modified version" of the

earlier work or a work "based on" the earlier work.

 A "covered work" means either the unmodified Program or a work based

on the Program.

 To "propagate" a work means to do anything with it that, without

permission, would make you directly or secondarily liable for

infringement under applicable copyright law, except executing it on a

computer or modifying a private copy. Propagation includes copying,

distribution (with or without modification), making available to the

public, and in some countries other activities as well.

140

 To "convey" a work means any kind of propagation that enables other

parties to make or receive copies. Mere interaction with a user through

a computer network, with no transfer of a copy, is not conveying.

 An interactive user interface displays "Appropriate Legal Notices"

to the extent that it includes a convenient and prominently visible

feature that (1) displays an appropriate copyright notice, and (2)

tells the user that there is no warranty for the work (except to the

extent that warranties are provided), that licensees may convey the

work under this License, and how to view a copy of this License. If

the interface presents a list of user commands or options, such as a

menu, a prominent item in the list meets this criterion.

 1. Source Code.

 The "source code" for a work means the preferred form of the work

for making modifications to it. "Object code" means any non-source

form of a work.

 A "Standard Interface" means an interface that either is an official

standard defined by a recognized standards body, or, in the case of

interfaces specified for a particular programming language, one that

is widely used among developers working in that language.

 The "System Libraries" of an executable work include anything, other

than the work as a whole, that (a) is included in the normal form of

packaging a Major Component, but which is not part of that Major

Component, and (b) serves only to enable use of the work with that

Major Component, or to implement a Standard Interface for which an

implementation is available to the public in source code form. A

"Major Component", in this context, means a major essential component

(kernel, window system, and so on) of the specific operating system

(if any) on which the executable work runs, or a compiler used to

produce the work, or an object code interpreter used to run it.

 The "Corresponding Source" for a work in object code form means all

the source code needed to generate, install, and (for an executable

work) run the object code and to modify the work, including scripts to

141

control those activities. However, it does not include the work's

System Libraries, or general-purpose tools or generally available free

programs which are used unmodified in performing those activities but

which are not part of the work. For example, Corresponding Source

includes interface definition files associated with source files for

the work, and the source code for shared libraries and dynamically

linked subprograms that the work is specifically designed to require,

such as by intimate data communication or control flow between those

subprograms and other parts of the work.

 The Corresponding Source need not include anything that users

can regenerate automatically from other parts of the Corresponding

Source.

 The Corresponding Source for a work in source code form is that

same work.

 2. Basic Permissions.

 All rights granted under this License are granted for the term of

copyright on the Program, and are irrevocable provided the stated

conditions are met. This License explicitly affirms your unlimited

permission to run the unmodified Program. The output from running a

covered work is covered by this License only if the output, given its

content, constitutes a covered work. This License acknowledges your

rights of fair use or other equivalent, as provided by copyright law.

 You may make, run and propagate covered works that you do not

convey, without conditions so long as your license otherwise remains

in force. You may convey covered works to others for the sole purpose

of having them make modifications exclusively for you, or provide you

with facilities for running those works, provided that you comply with

the terms of this License in conveying all material for which you do

not control copyright. Those thus making or running the covered works

for you must do so exclusively on your behalf, under your direction

and control, on terms that prohibit them from making any copies of

your copyrighted material outside their relationship with you.

142

 Conveying under any other circumstances is permitted solely under

the conditions stated below. Sublicensing is not allowed; section 10

makes it unnecessary.

 3. Protecting Users' Legal Rights From Anti-Circumvention Law.

 No covered work shall be deemed part of an effective technological

measure under any applicable law fulfilling obligations under article

11 of the WIPO copyright treaty adopted on 20 December 1996, or

similar laws prohibiting or restricting circumvention of such

measures.

 When you convey a covered work, you waive any legal power to forbid

circumvention of technological measures to the extent such circumvention

is effected by exercising rights under this License with respect to

the covered work, and you disclaim any intention to limit operation or

modification of the work as a means of enforcing, against the work's

users, your or third parties' legal rights to forbid circumvention of

technological measures.

 4. Conveying Verbatim Copies.

 You may convey verbatim copies of the Program's source code as you

receive it, in any medium, provided that you conspicuously and

appropriately publish on each copy an appropriate copyright notice;

keep intact all notices stating that this License and any

non-permissive terms added in accord with section 7 apply to the code;

keep intact all notices of the absence of any warranty; and give all

recipients a copy of this License along with the Program.

 You may charge any price or no price for each copy that you convey,

and you may offer support or warranty protection for a fee.

 5. Conveying Modified Source Versions.

 You may convey a work based on the Program, or the modifications to

produce it from the Program, in the form of source code under the

terms of section 4, provided that you also meet all of these conditions:

143

 a) The work must carry prominent notices stating that you modified

 it, and giving a relevant date.

 b) The work must carry prominent notices stating that it is

 released under this License and any conditions added under section

 7. This requirement modifies the requirement in section 4 to

 "keep intact all notices".

 c) You must license the entire work, as a whole, under this

 License to anyone who comes into possession of a copy. This

 License will therefore apply, along with any applicable section 7

 additional terms, to the whole of the work, and all its parts,

 regardless of how they are packaged. This License gives no

 permission to license the work in any other way, but it does not

 invalidate such permission if you have separately received it.

 d) If the work has interactive user interfaces, each must display

 Appropriate Legal Notices; however, if the Program has interactive

 interfaces that do not display Appropriate Legal Notices, your

 work need not make them do so.

 A compilation of a covered work with other separate and independent

works, which are not by their nature extensions of the covered work,

and which are not combined with it such as to form a larger program,

in or on a volume of a storage or distribution medium, is called an

"aggregate" if the compilation and its resulting copyright are not

used to limit the access or legal rights of the compilation's users

beyond what the individual works permit. Inclusion of a covered work

in an aggregate does not cause this License to apply to the other

parts of the aggregate.

 6. Conveying Non-Source Forms.

 You may convey a covered work in object code form under the terms

of sections 4 and 5, provided that you also convey the

machine-readable Corresponding Source under the terms of this License,

in one of these ways:

144

 a) Convey the object code in, or embodied in, a physical product

 (including a physical distribution medium), accompanied by the

 Corresponding Source fixed on a durable physical medium

 customarily used for software interchange.

 b) Convey the object code in, or embodied in, a physical product

 (including a physical distribution medium), accompanied by a

 written offer, valid for at least three years and valid for as

 long as you offer spare parts or customer support for that product

 model, to give anyone who possesses the object code either (1) a

 copy of the Corresponding Source for all the software in the

 product that is covered by this License, on a durable physical

 medium customarily used for software interchange, for a price no

 more than your reasonable cost of physically performing this

 conveying of source, or (2) access to copy the

 Corresponding Source from a network server at no charge.

 c) Convey individual copies of the object code with a copy of the

 written offer to provide the Corresponding Source. This

 alternative is allowed only occasionally and noncommercially, and

 only if you received the object code with such an offer, in accord

 with subsection 6b.

 d) Convey the object code by offering access from a designated

 place (gratis or for a charge), and offer equivalent access to the

 Corresponding Source in the same way through the same place at no

 further charge. You need not require recipients to copy the

 Corresponding Source along with the object code. If the place to

 copy the object code is a network server, the Corresponding Source

 may be on a different server (operated by you or a third party)

 that supports equivalent copying facilities, provided you maintain

 clear directions next to the object code saying where to find the

 Corresponding Source. Regardless of what server hosts the

 Corresponding Source, you remain obligated to ensure that it is

 available for as long as needed to satisfy these requirements.

 e) Convey the object code using peer-to-peer transmission, provided

145

 you inform other peers where the object code and Corresponding

 Source of the work are being offered to the general public at no

 charge under subsection 6d.

 A separable portion of the object code, whose source code is excluded

from the Corresponding Source as a System Library, need not be

included in conveying the object code work.

 A "User Product" is either (1) a "consumer product", which means any

tangible personal property which is normally used for personal, family,

or household purposes, or (2) anything designed or sold for incorporation

into a dwelling. In determining whether a product is a consumer product,

doubtful cases shall be resolved in favor of coverage. For a particular

product received by a particular user, "normally used" refers to a

typical or common use of that class of product, regardless of the status

of the particular user or of the way in which the particular user

actually uses, or expects or is expected to use, the product. A product

is a consumer product regardless of whether the product has substantial

commercial, industrial or non-consumer uses, unless such uses represent

the only significant mode of use of the product.

 "Installation Information" for a User Product means any methods,

procedures, authorization keys, or other information required to install

and execute modified versions of a covered work in that User Product from

a modified version of its Corresponding Source. The information must

suffice to ensure that the continued functioning of the modified object

code is in no case prevented or interfered with solely because

modification has been made.

 If you convey an object code work under this section in, or with, or

specifically for use in, a User Product, and the conveying occurs as

part of a transaction in which the right of possession and use of the

User Product is transferred to the recipient in perpetuity or for a

fixed term (regardless of how the transaction is characterized), the

Corresponding Source conveyed under this section must be accompanied

by the Installation Information. But this requirement does not apply

if neither you nor any third party retains the ability to install

modified object code on the User Product (for example, the work has

146

been installed in ROM).

 The requirement to provide Installation Information does not include a

requirement to continue to provide support service, warranty, or updates

for a work that has been modified or installed by the recipient, or for

the User Product in which it has been modified or installed. Access to a

network may be denied when the modification itself materially and

adversely affects the operation of the network or violates the rules and

protocols for communication across the network.

 Corresponding Source conveyed, and Installation Information provided,

in accord with this section must be in a format that is publicly

documented (and with an implementation available to the public in

source code form), and must require no special password or key for

unpacking, reading or copying.

 7. Additional Terms.

 "Additional permissions" are terms that supplement the terms of this

License by making exceptions from one or more of its conditions.

Additional permissions that are applicable to the entire Program shall

be treated as though they were included in this License, to the extent

that they are valid under applicable law. If additional permissions

apply only to part of the Program, that part may be used separately

under those permissions, but the entire Program remains governed by

this License without regard to the additional permissions.

 When you convey a copy of a covered work, you may at your option

remove any additional permissions from that copy, or from any part of

it. (Additional permissions may be written to require their own

removal in certain cases when you modify the work.) You may place

additional permissions on material, added by you to a covered work,

for which you have or can give appropriate copyright permission.

 Notwithstanding any other provision of this License, for material you

add to a covered work, you may (if authorized by the copyright holders of

that material) supplement the terms of this License with terms:

147

 a) Disclaiming warranty or limiting liability differently from the

 terms of sections 15 and 16 of this License; or

 b) Requiring preservation of specified reasonable legal notices or

 author attributions in that material or in the Appropriate Legal

 Notices displayed by works containing it; or

 c) Prohibiting misrepresentation of the origin of that material, or

 requiring that modified versions of such material be marked in

 reasonable ways as different from the original version; or

 d) Limiting the use for publicity purposes of names of licensors or

 authors of the material; or

 e) Declining to grant rights under trademark law for use of some

 trade names, trademarks, or service marks; or

 f) Requiring indemnification of licensors and authors of that

 material by anyone who conveys the material (or modified versions of

 it) with contractual assumptions of liability to the recipient, for

 any liability that these contractual assumptions directly impose on

 those licensors and authors.

 All other non-permissive additional terms are considered "further

restrictions" within the meaning of section 10. If the Program as you

received it, or any part of it, contains a notice stating that it is

governed by this License along with a term that is a further

restriction, you may remove that term. If a license document contains

a further restriction but permits relicensing or conveying under this

License, you may add to a covered work material governed by the terms

of that license document, provided that the further restriction does

not survive such relicensing or conveying.

 If you add terms to a covered work in accord with this section, you

must place, in the relevant source files, a statement of the

additional terms that apply to those files, or a notice indicating

where to find the applicable terms.

148

 Additional terms, permissive or non-permissive, may be stated in the

form of a separately written license, or stated as exceptions;

the above requirements apply either way.

 8. Termination.

 You may not propagate or modify a covered work except as expressly

provided under this License. Any attempt otherwise to propagate or

modify it is void, and will automatically terminate your rights under

this License (including any patent licenses granted under the third

paragraph of section 11).

 However, if you cease all violation of this License, then your

license from a particular copyright holder is reinstated (a)

provisionally, unless and until the copyright holder explicitly and

finally terminates your license, and (b) permanently, if the copyright

holder fails to notify you of the violation by some reasonable means

prior to 60 days after the cessation.

 Moreover, your license from a particular copyright holder is

reinstated permanently if the copyright holder notifies you of the

violation by some reasonable means, this is the first time you have

received notice of violation of this License (for any work) from that

copyright holder, and you cure the violation prior to 30 days after

your receipt of the notice.

 Termination of your rights under this section does not terminate the

licenses of parties who have received copies or rights from you under

this License. If your rights have been terminated and not permanently

reinstated, you do not qualify to receive new licenses for the same

material under section 10.

 9. Acceptance Not Required for Having Copies.

 You are not required to accept this License in order to receive or

run a copy of the Program. Ancillary propagation of a covered work

occurring solely as a consequence of using peer-to-peer transmission

to receive a copy likewise does not require acceptance. However,

149

nothing other than this License grants you permission to propagate or

modify any covered work. These actions infringe copyright if you do

not accept this License. Therefore, by modifying or propagating a

covered work, you indicate your acceptance of this License to do so.

 10. Automatic Licensing of Downstream Recipients.

 Each time you convey a covered work, the recipient automatically

receives a license from the original licensors, to run, modify and

propagate that work, subject to this License. You are not responsible

for enforcing compliance by third parties with this License.

 An "entity transaction" is a transaction transferring control of an

organization, or substantially all assets of one, or subdividing an

organization, or merging organizations. If propagation of a covered

work results from an entity transaction, each party to that

transaction who receives a copy of the work also receives whatever

licenses to the work the party's predecessor in interest had or could

give under the previous paragraph, plus a right to possession of the

Corresponding Source of the work from the predecessor in interest, if

the predecessor has it or can get it with reasonable efforts.

 You may not impose any further restrictions on the exercise of the

rights granted or affirmed under this License. For example, you may

not impose a license fee, royalty, or other charge for exercise of

rights granted under this License, and you may not initiate litigation

(including a cross-claim or counterclaim in a lawsuit) alleging that

any patent claim is infringed by making, using, selling, offering for

sale, or importing the Program or any portion of it.

 11. Patents.

 A "contributor" is a copyright holder who authorizes use under this

License of the Program or a work on which the Program is based. The

work thus licensed is called the contributor's "contributor version".

 A contributor's "essential patent claims" are all patent claims

owned or controlled by the contributor, whether already acquired or

150

hereafter acquired, that would be infringed by some manner, permitted

by this License, of making, using, or selling its contributor version,

but do not include claims that would be infringed only as a

consequence of further modification of the contributor version. For

purposes of this definition, "control" includes the right to grant

patent sublicenses in a manner consistent with the requirements of

this License.

 Each contributor grants you a non-exclusive, worldwide, royalty-free

patent license under the contributor's essential patent claims, to

make, use, sell, offer for sale, import and otherwise run, modify and

propagate the contents of its contributor version.

 In the following three paragraphs, a "patent license" is any express

agreement or commitment, however denominated, not to enforce a patent

(such as an express permission to practice a patent or covenant not to

sue for patent infringement). To "grant" such a patent license to a

party means to make such an agreement or commitment not to enforce a

patent against the party.

 If you convey a covered work, knowingly relying on a patent license,

and the Corresponding Source of the work is not available for anyone

to copy, free of charge and under the terms of this License, through a

publicly available network server or other readily accessible means,

then you must either (1) cause the Corresponding Source to be so

available, or (2) arrange to deprive yourself of the benefit of the

patent license for this particular work, or (3) arrange, in a manner

consistent with the requirements of this License, to extend the patent

license to downstream recipients. "Knowingly relying" means you have

actual knowledge that, but for the patent license, your conveying the

covered work in a country, or your recipient's use of the covered work

in a country, would infringe one or more identifiable patents in that

country that you have reason to believe are valid.

 If, pursuant to or in connection with a single transaction or

arrangement, you convey, or propagate by procuring conveyance of, a

covered work, and grant a patent license to some of the parties

receiving the covered work authorizing them to use, propagate, modify

151

or convey a specific copy of the covered work, then the patent license

you grant is automatically extended to all recipients of the covered

work and works based on it.

 A patent license is "discriminatory" if it does not include within

the scope of its coverage, prohibits the exercise of, or is

conditioned on the non-exercise of one or more of the rights that are

specifically granted under this License. You may not convey a covered

work if you are a party to an arrangement with a third party that is

in the business of distributing software, under which you make payment

to the third party based on the extent of your activity of conveying

the work, and under which the third party grants, to any of the

parties who would receive the covered work from you, a discriminatory

patent license (a) in connection with copies of the covered work

conveyed by you (or copies made from those copies), or (b) primarily

for and in connection with specific products or compilations that

contain the covered work, unless you entered into that arrangement,

or that patent license was granted, prior to 28 March 2007.

 Nothing in this License shall be construed as excluding or limiting

any implied license or other defenses to infringement that may

otherwise be available to you under applicable patent law.

 12. No Surrender of Others' Freedom.

 If conditions are imposed on you (whether by court order, agreement or

otherwise) that contradict the conditions of this License, they do not

excuse you from the conditions of this License. If you cannot convey a

covered work so as to satisfy simultaneously your obligations under this

License and any other pertinent obligations, then as a consequence you may

not convey it at all. For example, if you agree to terms that obligate you

to collect a royalty for further conveying from those to whom you convey

the Program, the only way you could satisfy both those terms and this

License would be to refrain entirely from conveying the Program.

 13. Use with the GNU Affero General Public License.

 Notwithstanding any other provision of this License, you have

152

permission to link or combine any covered work with a work licensed

under version 3 of the GNU Affero General Public License into a single

combined work, and to convey the resulting work. The terms of this

License will continue to apply to the part which is the covered work,

but the special requirements of the GNU Affero General Public License,

section 13, concerning interaction through a network will apply to the

combination as such.

 14. Revised Versions of this License.

 The Free Software Foundation may publish revised and/or new versions of

the GNU General Public License from time to time. Such new versions will

be similar in spirit to the present version, but may differ in detail to

address new problems or concerns.

 Each version is given a distinguishing version number. If the

Program specifies that a certain numbered version of the GNU General

Public License "or any later version" applies to it, you have the

option of following the terms and conditions either of that numbered

version or of any later version published by the Free Software

Foundation. If the Program does not specify a version number of the

GNU General Public License, you may choose any version ever published

by the Free Software Foundation.

 If the Program specifies that a proxy can decide which future

versions of the GNU General Public License can be used, that proxy's

public statement of acceptance of a version permanently authorizes you

to choose that version for the Program.

 Later license versions may give you additional or different

permissions. However, no additional obligations are imposed on any

author or copyright holder as a result of your choosing to follow a

later version.

 15. Disclaimer of Warranty.

 THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED

BY

153

APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE

COPYRIGHT

HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT

WARRANTY

OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED

TO,

THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A

PARTICULAR

PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF

THE PROGRAM

IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE

COST OF

ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

 16. Limitation of Liability.

 IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN

WRITING

WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES

AND/OR CONVEYS

THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,

INCLUDING ANY

GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING

OUT OF THE

USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO

LOSS OF

DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY

YOU OR THIRD

PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER

PROGRAMS),

EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE

POSSIBILITY OF

SUCH DAMAGES.

 17. Interpretation of Sections 15 and 16.

 If the disclaimer of warranty and limitation of liability provided

above cannot be given local legal effect according to their terms,

154

reviewing courts shall apply local law that most closely approximates

an absolute waiver of all civil liability in connection with the

Program, unless a warranty or assumption of liability accompanies a

copy of the Program in return for a fee.

 END OF TERMS AND CONDITIONS

 How to Apply These Terms to Your New Programs

 If you develop a new program, and you want it to be of the greatest

possible use to the public, the best way to achieve this is to make it

free software which everyone can redistribute and change under these terms.

 To do so, attach the following notices to the program. It is safest

to attach them to the start of each source file to most effectively

state the exclusion of warranty; and each file should have at least

the "copyright" line and a pointer to where the full notice is found.

 <one line to give the program's name and a brief idea of what it does.>

 Copyright (C) <year> <name of author>

 This program is free software: you can redistribute it and/or modify

 it under the terms of the GNU General Public License as published by

 the Free Software Foundation, either version 3 of the License, or

 (at your option) any later version.

 This program is distributed in the hope that it will be useful,

 but WITHOUT ANY WARRANTY; without even the implied warranty of

 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License

 along with this program. If not, see <http://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.

 If the program does terminal interaction, make it output a short

notice like this when it starts in an interactive mode:

155

 <program> Copyright (C) <year> <name of author>

 This program comes with ABSOLUTELY NO WARRANTY; for details type `show

w'.

 This is free software, and you are welcome to redistribute it

 under certain conditions; type `show c' for details.

The hypothetical commands `show w' and `show c' should show the appropriate

parts of the General Public License. Of course, your program's commands

might be different; for a GUI interface, you would use an "about box".

 You should also get your employer (if you work as a programmer) or school,

if any, to sign a "copyright disclaimer" for the program, if necessary.

For more information on this, and how to apply and follow the GNU GPL, see

<http://www.gnu.org/licenses/>.

 The GNU General Public License does not permit incorporating your program

into proprietary programs. If your program is a subroutine library, you

may consider it more useful to permit linking proprietary applications with

the library. If this is what you want to do, use the GNU Lesser General

Public License instead of this License. But first, please read

<http://www.gnu.org/philosophy/why-not-lgpl.html>.

156

15.2 Ansible Collections package creation

The following explains how to create a package in the Ansible Collections format of the
SmartCS modules for Ansible.
The source is available on GitHub.
After downloading the source from GitHub, you can create a package in the Ansible
Collections format by executing the ansible-galaxy command in an environment that
can run Ansible2.10.

$ git clone https://github.com/ssol-smartcs/ansible-collections/seiko.smartcs
$
$ ansible-galaxy collection build seiko.smartcs
$

〒261-8507 千葉県千葉市美浜区中瀬 1-8
support@seiko-sol.co.jp

	Cover
	Copyright
	Table of Contents
	1 Introduction
	1.1 “SmartCS modules for Ansible” Overview
	1.2 Functional overview
	1.2.1 Console Access Function Overview
	1.2.2 CLI Command Function Overview

	1.3 Operating environment
	1.3.1 Control node / Managed node
	1.3.2 Operating requirements
	1.3.3 Ansible environment

	1.4 License
	1.5 How to get “SmartCS modules for Ansible”

	2 Installation
	2.1 Pre-installation Check
	2.2 Installation
	2.3 Upgrading
	2.4 Deleting the installed collection files
	2.5 About dependent packages
	2.6 Other

	3 Preparations
	3.1 Preparing the SmartCS
	3.2 Preparation for control node

	4 Creating a Playbook Compatible with Ansible Collections
	4.1 Module specification
	4.2 Connection plugin (network_cli) specification

	5 Console Access Function
	5.1 Preparing the SmartCS
	5.2 Preparation for creating a Playbook
	5.3 Playbook Example

	6 Linking with Network Device Vendor Modules
	6.1 Overview
	6.2 Preparation for SmartCS
	6.3 Preparation for creating a Playbook
	6.4 Playbook example
	6.5 Instructions and Directions for Use

	7 CLI Command Function
	7.1 Preparing the SmartCS
	7.2 Preparations for creating Playbook
	7.3 Module and privileged user
	7.4 Playbook Example

	8 Modules
	8.1 seiko.smartcs.smartcs_tty_command
	8.1.1 Overview
	8.1.2 Options
	8.1.3 Playbook Example
	8.1.4 Return Values
	8.1.5 Explanations
	8.1.6 Instructions and Directions for Use

	8.2 seiko.smartcs.smartcs_command
	8.2.1 Overview
	8.2.2 Options
	8.2.3 Playbook Example
	8.2.4 Return Values

	8.3 seiko.smartcs.smartcs_config
	8.3.1 Overview
	8.3.2 Options
	8.3.3 Playbook Example
	8.3.4 Return Values

	8.4 seiko.smartcs.smartcs_facts
	8.4.1 Overview
	8.4.2 Options
	8.4.3 Playbook Example
	8.4.4 Return Values

	9 Limitations
	9.1 Administering the SmartCS series console with “smartcs_tty_command”
	9.2 Gathering device information with gather_facts

	10 Troubleshooting
	10.1 “Unable to connect to port 22 on x.x.x.x”
	10.2 “timed out”
	10.3 “Error reading SSH protocol banner”
	10.4 “The authenticity of host ‘x.x.x.x’ can’t be established.”
	10.5 ”Authentication failed.”
	10.6 “Bad authentication type”
	10.7 “Unable to automatically determine host network os.”
	10.8 “unable to elevate privilege to enable mode”
	10.9 “command timeout triggered, timeout value is X secs.”
	10.10 “timeout value X seconds reached while trying to send～”
	10.11 "Ignoring timeout(10) for smartcs_facts"

	11 Appendix A. Building the Ansible Environment
	11.1 Building the Ansible environment with venv
	11.2 Preparation for ansible.cfg

	12 Appendix B. v1.0 to v1.2 Operation
	12.1 Overview of the v1.0 to v1.2 operation
	12.2 Pre-installation Check
	12.3 Installation
	12.4 Upgrading
	12.5 Uninstalling
	12.6 Command Reference (install_smartcs_modules)

	13 Appendix C. Handling of Various Characters in Playbooks
	13.1 Specifiable Character Types
	13.2 Sending Various Types of Characters
	13.3 Configuring Regular Expressions
	13.4 Execution Result Output Characters

	14 Appendix D. Tips for using the “SmartCS modules for Ansible”
	14.1 How to Write the File Specifying the src Option
	14.2 Sending Characters Simultaneously to Multiple Network devices

	15 Licenses
	15.1 Third-party Software Licenses
	15.2 Ansible Collections package creation

